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Logarithmic relaxation in a colloidal system

M. Sperl
Physik Department, Technische Universita¨t München, 85747 Garching, Germany

~Received 18 May 2003; published 19 September 2003!

The slow dynamics for a colloidal suspension of particles interacting with a hard-core repulsion comple-
mented by a short-ranged attraction is discussed within the frame of mode-coupling theory for ideal glass
transitions for parameter points near a higher-order glass-transition singularity. The solutions of the equations
of motion for the density correlation functions are solved for the square-well system in quantitative detail by
asymptotic expansion using the distance of the three control parameters—packing fraction, attraction strength
and attraction range—from their critical values as small parameters. For given wave vectors, distinguished
surfaces in parameter space are identified where the next-to-leading-order contributions for the expansion
vanish so that the decay functions exhibit a logarithmic decay over large time intervals. For both coherent and
tagged particle dynamics the leading-order logarithmic decay is accessible in the liquid regime for wave
vectors of several times the principal peak in the structure factor. The logarithmic decay in the correlation
function is manifested in the mean-squared displacement as a subdiffusive power law with an exponent varying
sensitively with the control parameters. Shifting parameters through the distinguished surfaces, the correlation
functions and the logarithm of the mean-squared displacement considered as functions of the logarithm of the
time exhibit a crossover from concave to convex behavior, and a similar scenario is obtained when varying the
wave vector.

DOI: 10.1103/PhysRevE.68.031405 PACS number~s!: 82.70.Dd, 61.20.Lc, 64.70.Pf
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I. INTRODUCTION

The dynamics in an interacting many particle system
conveniently described by density autocorrelation functio
fq(t) for time t and wave vectorq. These correlation func
tions can be measured in both experiment and comp
simulation@1#. Mode-coupling theory for ideal glass trans
tions ~MCT! discusses the transition from a liquid to a gla
as a bifurcation in the long-time limit of the correlatorfq(t)
@2#. In the liquid state, the correlation function decays
zero. If a control parameter, say density, exceeds some c
cal value, the long-time limit changes discontinuously fro
zero to a finite value, a glass transition occurs@3#. This
liquid-glass transition is identified with anA2 or fold singu-
larity @4# in the equations of motion of MCT. The simple
example for a liquid-glass transition is found in the ha
sphere system~HSS!, where the interaction potential amon
the particles is zero unless their mutual separation beco
smaller than their diameter where the potential becomes
finitely repulsive, thus preventing the particles from overla
ping. The HSS is the system MCT was applied to first@3#,
and it is also the system for which the most detailed pred
tions have been worked out@5,6#. Close to the singularity
the equations of motion can be expanded in asymptotic
ries. This yields a two-step decay with two related pow
laws for the short-time and the long-time decay at a liqu
glass transition@2#. The HSS can be realized in colloida
suspensions@7#. Experiments in these systems lead to t
conclusion that MCT is able to describe the main aspect
the glass transition qualitatively and some aspects e
quantitatively@8#.

MCT can also exhibit other singularities than the fold@2#.
These higher-order singularities were predicted recently
occur for colloidal systems with short-ranged attracti
whereA3 andA4 singularities were found that are also call
1063-651X/2003/68~3!/031405~13!/$20.00 68 0314
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cusp and swallowtail@9–11#. In these systems, the hard-co
repulsion is supplemented by a short-ranged attraction,
in the square-well system~SWS!. A cusp singularity is the
endpoint of a line of glass-glass transitions that arises if t
different mechanisms of arrest are of the same importance
the SWS the first mechanism is the hard-core repulsion
causes a transition as in the HSS via the well known c
effect. The second mechanism leading to arrest is bond
mation introduced by the attractive part of the potential. T
latter transition was proposed as relevant for the transitio
a gel @10#. If the difference in the two mechanisms is le
pronounced, the glass-glass transitions vanish and give
to anA4 singularity. In the SWS this happens as the range
the attraction is increased@11#. The range of attraction con
sidered here is of order less than 20% of the particle dia
eter and the strength is about severalkBT. This is accessible
in colloid-polymer mixtures with nonadsorbing polyme
which is well under control experimentally@12#. Higher-
order singularities have also been identified for a numbe
short-ranged potentials with shapes differing from the SW
yielding certain quantitative trends but no qualitati
changes@13#.

In addition to the success of MCT for the description
the HSS, two findings support the use of this theory for
description of colloids with attraction. First, a reentry ph
nomenon was predicted by the theory where a glass sta
melted upon increasing the attraction@9,11#. This was subse-
quently found in several experiments@14,15# and computer
simulation studies@15–18#. Second, there are indications o
logarithmic decay@19# and related anomalous decays@20,17#
that are consistent with scenarios found within MCT@9,11#.
To investigate the dynamics in such systems, apart fr
computer simulation dynamic light scattering has alrea
been used to determine correlation functions@20,14,15#. Di-
rect imaging techniques are available to determine also
©2003 The American Physical Society05-1
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mean-squared displacement~MSD! with high precision@21–
23#. The purpose of the present paper is the application of
general theory for higher-order singularities@24# to the SWS
and the derivation of testable quantitative predictions for
correlation functions and the MSD. Certain scenarios h
been discussed before for schematic models@24#. Some of
these scenarios shall be identified also in the microsco
model in the following.

The paper is organized as follows. In Sec. II the equati
of motion and the asymptotic solution for the logarithm
decay are summarized and the subdiffusive power law
the MSD is derived. The theory is applied to theA4 singu-
larity in the SWS for the correlation functions in Sec. III an
for the MSD in Sec. IV. Changes in the scenarios when m
ing from theA4 singularity toA3 singularities are discusse
in Sec. V, and Sec. VI contains a comparison to results
tained for the hard-core Yukawa system~HCY!. Section VII
presents a conclusion.

II. ASYMPTOTIC SOLUTIONS

We shall consider a system ofN particles with diameterd
in a volumeV interacting with a spherical potential. When
time t the j th particle is located atrW j (t) the density variables
are defined asrq(t)5( jexp@iqWrWj(t)#.

A. Equations of motion

The equations of motion for the normalized density co
elators fq(t)5^rqW

* (t)rqW&/^urqW u2& within MCT, when
Brownian dynamics for the motion in colloids is assume
are given by@3,2,25,26#

tq] tfq~ t !1fq~ t !1E
0

t

mq~ t2t8!] t8fq~ t8! dt850.

~1a!

The initial conditions arefq(0)51. The microscopic time
scale readstq5Sq /(D0q2). It is given by the short-time
diffusion coefficientD0 characterizing the Brownian motio
and the static structure factorSq5^urqW u2&. The mode-
coupling approximation results in expressing the kern
mq(t) in terms of the correlatorsfq(t) @2#,

mq~ t !5Fq@V,fk~ t !#. ~1b!

As a consequence of the factorization into pair modes for
structural relaxation in simple liquids,Fq is a bilinear func-
tional of the density correlators@3#,

Fq@ f̃ #5
1

2E d3k

~2p!3
VqW ,kW f̃ k f̃ uqW 2kW u , ~1c!

and the vertex is determined completely by the static str
ture of the liquid system@27,28#,

VqW ,kW5SqSkSuqW 2kW ur@qW •kWck1qW •~qW 2kW !cuqW 2kW u#
2/q4. ~1d!

The number density is given byr5N/V andcq denotes the
direct correlation function which is related to the static stru
03140
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ture factor Sq in the Ornstein-Zernike relation,Sq51/@1
2r cq#, both depend on external control parameters such
density or temperature@29#. For the SWS with hard-core
diameterd, depth of the potentialu0, and range of the po-
tentialD, we get three dimensionless control parameters,
packing fraction w5d3rp/6, the attraction strengthG
5u0 /(kBT), and the relative well widthd5D/d. These can
be combined to a control-parameter vectorV5(w,G,d).

It is the long-time limit of the correlation function
lim

t→`
fq(t)5 f q , that determines whether a system is in t

liquid regime, wheref q50, or in an arrested state, whe
0, f q<1. In the latter case, the valuesf q characterize the
arrested glassy state and thef q are called glass-form factor
or Debye-Waller factors. In the long-time limit, the equatio
of motion ~1! reduces to an equation involving only th
mode-coupling functional and the glass-form factors@2#,

f q /~12 f q!5Fq@ f #. ~2!

Frequently studied is the dynamics of a single or tagg
particle with the single particle densityrq

s(t)5exp@iqWrWs(t)#.
For the correlation function of a tagged particle,fq

s(t)
5^rqW

s * (t)rqW
s
&, similar equations as Eqs.~1! have been de-

rived @3,6#,

tq
s] tfq

s~ t !1fq
s~ t !1E

0

t

mq
s~ t2t8!] t8fq

s~ t8!dt850, ~3a!

with tq
s51/(D0

sq2). The short-time diffusion coefficient for a
single particle,D0

s , again specifies the Brownian dynamic
The mode-coupling functional for the tagged particle motio

F q
s@ f , f s#5E d3k

~2p!3
Sk

r

q4
ck

s2~qW kW !2f kf uqW 2kW u
s , ~3b!

is also determined by the static structure of the liquid syst
where cq

s is the single-particle direct correlation functio
@29#.

The dynamics of the tagged particle is coupled to
coherent density correlatorfq(t) and for that reasonfq

s(t)
also displays the bifurcation dynamics that is driven
fq(t). The equation for the long-time limits of the tagge
particle correlations function,fq

s(t→`)5 f q
s , reads

f q
s/~12 f q

s!5F q
s@ f , f s#. ~4!

In the following, the tagged particle will be assumed as
the same sort as the host fluid. If the host particles are in
liquid state,f q50, a tagged particle cannot be arrested, a
in that case Eq.~4! implies f q

s50.

The MSD is defined bydr 2(t)5^urWs(t)2rWs(0)u2& and de-
scribes the average distance a particle has traveled w
some timet @29#. It is obtained, e.g., as small wave-numb
limit of the tagged-particle correlator in Eq.~3!, fq

s(t)51
2q2dr 2(t)/61O(q4) @2,6#,

dr 2~ t !1D0
sE

0

t

m(0)~ t2t8!dr 2~ t8!dt856D0
st, ~5a!
5-2
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m(0)(t)5 lim
q→0

mq
s(t)5FMSD@f(t),fs(t)#. The mode-

coupling functional for the MSD reads

FMSD@ f , f s#5E dk

~6p2!
rSk~ck

s!2f kf k
s . ~5b!

A characteristic localization lengthr s is defined by the sec
ond moment for the relaxation of the distribution offq

s(t)
@2#, which can be identified with the functional in Eq.~5b!
r s

251/FMSD@ f , f s#. It is the long-time limit of the MSD. Its
value at the critical point,r s

c , characterizes the arreste
structure. The value 6r s

c2 represents the plateau for the d
namics ofdr 2(t).

Equations ~1!–~5! are solved numerically using algo
rithms introduced in Refs.@30,31#. Details of the implemen-
tation are found in Refs.@5,11#. We used as unit of length,
d51, and choose the unit of time so that 1/D051/D0

s

5160. The structure factors for the SWS and the HCY
calculated in mean-spherical approximation@11,32#. The
wave numbers shall be discretized to a grid ofM points with
a spacingDq50.4/d. The cutoff in the calculations is rang
ing from M5300 for d.0.04 up toM5750 for d50.02.

B. Logarithmic decay laws

The asymptotic solution at higher-order singularities sh
be quoted from Ref.@24# where also further details can b
found. The asymptotic expansion is performed in small
viations of the correlation function from the critical long
time limit f q

c involving the coefficients

Aqk1 , . . . ,kn

(n) ~V!5
1

n!
~12 f q

c!
]nFq@V, f k

c#

] f k1

c
•••] f kn

c

3~12 f k1

c !•••~12 f kn

c !, ~6!

which can be split into values at the singularit
Aqk1 , . . . ,kn

(n)c , and remainders, Aqk1 , . . . ,kn

(n) (V)

5Aqk1 , . . . ,kn

(n)c 1Âqk1 , . . . ,kn

(n) (V). The Jacobian matrix of Eq

~2! is singular at the critical points and assumes the fo
@dqk2Aqk

(1)c#. The non-negative left and right eigenvectors
matrix Aqk

(1)c shall be denoted byaq* andaq and can be fixed
uniquely by requiring(qaq* aq51 and(qaq* aq

251. The re-
duced resolventRqk of Aqk

(1)c maps vectors orthogonal toaq*
to vectors orthogonal toaq . The leading-order result for Eq
~1! is then given by

fq~ t !5 f q
c1hq@2B ln~ t/t!#, B5A@26«1~V!/p2# ~7!

with the critical amplitudeshq5(12 f q
c)aq and the separa

tion parameter«1(V)5aq* Âq
(0)(V), which is restricted to

negative values,«1,0. If « indicates the distance of th
control parametersV from the critical point, the leading re
sult is of orderA« and correct up toO(«). The next-to-
leading-order approximation is
03140
e
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fq~ t !5~ f q
c1 f̂ q!1hq@~2B1B1!ln~ t/t!

1~B21KqB2!ln2~ t/t!

1B3ln3~ t/t!1B4ln4~ t/t!#, ~8!

what includes the terms of order« and neglects terms o
order«3/2. It involves corrections to the plateau values,

f̂ q5~12 f q
c!Rqk@Âk

(0)~V!2e1~V!ak
2#, ~9!

correction amplitudes,

Kq5Rqk@Akk1k2

(2)c ak1
ak2

2ak
2#/aq , ~10!

and the prefactors,

B15~0.444 25z20.065 381m3!«1~V!20.222 13«2~V!,
~11a!

B25~0.911 89z10.068 713m3!«1~V!20.151 98«2~V!,
~11b!

B3520.135 04m3«1~V!, B4520.046 197m3«1~V!.
~11c!

The numbers characterizing the higher-order singularities

z5(
q

aq* @aq
2Kq1aq

3/2# ~12!

and

m352z2(
q

aq* @Aqk1k2k3

(3)c ak1
ak2

ak3
12Aqk1k2

(2)c ak1
ak2

Kk2
#.

~13!

For the leading correction also an additional separation
rameter is introduced,

«2~V!5(
q

aq* Âqk
(1)~V!ak12«1~V!(

q
aq* aq

2Kq

12(
q

aq* @Aqk1k2

(2)c ak1
f̂ k2

/~12 f k2

c !2aqf̂ q /~12 f q
c!#.

~14!

The time scalet is determined by matching asymptotic a
proximation and numerical solution offq(t) at the plateau
f q

c or the rescaled plateauf q
c1 f̂ q for Eq. ~7! and Eq.~8!,

respectively.

C. Coupled variables

Inserting the asymptotic expansion of Eq.~8! into the
long-time limit of Eq.~3a!, the approximation for the tagge
particle dynamics up to order« is obtained@33#,
5-3
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fq
s~ t !5~ f q

s c1 f̂ q
s!1hq

s@~2B1B1!ln~ t/t!

1~B21Kq
sB2!ln2~ t/t!

1B3ln3~ t/t!1B4ln4~ t/t!#, ~15!

with the critical amplitudeshq
s5(12 f q

sc)aq
s , the correction

amplitudesKq
s , and the plateau correctionsf̂ q

s . The latter are
derived from functional~3b! and the related coherent qua
tities by

(
k

~dqk2Aq,k
sc !ak

s5(
k

Aqk
scak , ~16a!

(
k

~dqk2Aq,k
sc !ak

sKk
s

52aq
s21(

k
Aqk

scakKk1(
k,p

@Aq,kp
sc ak

sap
s

1Aqkp
sc akap1Aqk,p

sc akap
s# , ~16b!

(
k

~dqk2Aq,k
sc !ak

sf̂ k
s52«1~V!aq

s21(
k

Aqk
scakf̂ k1Âq

s~V!.

~16c!

The derivatives with respect to the coherent and tagged
ticle glass-form factors are denoted before and after
comma, respectively. The coefficients are

Aqk1 , . . . ,kn ,p1 , . . . ,pm

s ~V!

5
1

n!

1

m!
~12 f q

sc!
]n]mF q

s@V, f k
c , f q

sc#

] f k1
•••] f kn

] f p1

s
•••] f pn

s

3~12 f k1

c !•••~12 f kn

c !~12 f p1

s c!•••~12 f pn

s c!

5Aqk1 , . . . ,kn ,p1 , . . . ,pm

sc 1Âqk1 , . . . ,kn ,p1 , . . . ,pm

s ~V!.

~17!

Similar arguments as above yield the asymptotic exp
sion for the MSD up to order«,

1

6
dr 2~ t !5r s

c22 r̂ s
22hMSD@~2B1B1!ln~ t/t!

1~B21KMSDB2!ln2~ t/t!

1B3ln3~ t/t!1B4ln4~ t/t!# ~18!

with parameters

hMSD5r s
c4$F MSD

c @hk , f p
sc#1F MSD

c @ f k
c ,hp

s#%, ~19a!

KMSD5r s
c4$F MSD

c @hk ,hp
s#1F MSD

c @hkKk , f p
sc#

1F MSD
c @ f k

c ,hp
sKp

s#%/hMSD2hMSD/r s
c2 , ~19b!
03140
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r̂ s
25r s

c4$F MSD
c @hkf̂ k , f p

sc#1F MSD
c @ f k

c ,hp
s f̂ p

s#

1F MSD
c @ f k

c , f p
sc#~V!2F MSD

c @ f k
c , f p

sc#~Vc!%/hMSD

2«1~V!hMSD
2 /r s

c2 . ~19c!

For the generic liquid-glass transition, the asymptotic exp
sion was carried out with a different convention as in Eq.~6!,
however, the quantitieshq , Kq , hq

s , Kq
s , hMSD, KMSD, and

z are the same in both descriptions@5,6#. The plateau correc-
tions, f̂ q , f̂ q

s , andr̂ s
2 are different for liquid-glass transition

and higher-order singularities. The expansions in Eqs.~8!,
~15!, and~18! share the coefficientsB, B1 , B2 , B3, andB4.
They differ in the plateau and its correction, the critical a
plitude, and the correction amplitude.

D. Subdiffusive power law in the MSD

The logarithmic decay laws shall be phrased for the M
in a slightly different form than in Eq.~18!. This is done in
order to account for the fact that the MSD is convenien
shown in a double-logarithmic representation which is m
sensitive to the detection of power laws. The asymptotic
proximation ~18! for the MSD can be written asz5a0
1a1 y1a2 y21a3 y31a4 y4. Here, z5dr 2(t)/6 and y
5 ln(t/t) The constant term represents the square of the
rected localization length,a05r s

c22 r̂ s
2 , the coefficientsa1

5hMSD(B2B1), a252hMSD(B21KMSDB2) as well asa3
52hMSDB3 and a42hMSDB4 are the separation depende
prefactors for the leading and next-to-leading-order term
This yields the expansion

ln z5 ln r s
c22 r̂ s

2/r s
c21x8y1b2y21a3 /r s

c2y31a4 /r s
c2y4

1O~«3/2! ~20a!

with

x85a1 /r s
c2 , b25

2r s
c2a22a1

2

2r s
c4

. ~20b!

In leading order, one gets a power law for the MSD,

dr 2~ t !/65r s
c2~ t/t!x ~21a!

with an exponent

x5hMSDB/r s
c2. ~21b!

Exponentx varies with the square root in the separation p
rameter«1, cf. Eq. ~7!. Including the corrections of order«
rescales the exponent to

x85hMSD~B2B1!/r s
c2 ~22a!

and the next-to-leading-order result reads

dr 2~ t !/65~ t/t!x8$r s
c2 2 r̂ s

21b2 r s
c2ln~ t/t!21a3ln~ t/t!3

1a4ln~ t/t!4%. ~22b!
5-4
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III. CORRELATION FUNCTIONS NEAR AN A4

SINGULARITY

Before we can apply the asymptotic expansion of Eq.~8!,
we need to specify the values form3 andz appearing in the
prefactors of Eqs.~11!. The A4 singularity is characterized
by m350. This condition has been used to locate theA4
singularity atV5V* for the SWS by

w* 50.527 68, G* 54.4759, d* 50.043 81. ~23!

The vanishing parameterm3 implies a considerable simplifi
cation in the preceding formulas sinceB35B450 @24#. The
deviations of the control parameter values specifying theA4
singularity from the ones reported in Ref.@11# originate from
refined numerical procedures used here and they do no
ceed 6%. The characteristic parameter wasum3u,531024

at the control-parameter values specified above. The pa
eterz varies regularly and isz50.122 at theA4 singularity.
This is smaller than the value in the HSS,zHSS50.269@5#.

The second prerequisite for the asymptotic description
cording to Eq.~8! are the wave-vector dependent amplitud
f q* , hq* , andKq* . These are shown for theA4 singularity in
Fig. 1 together with the related values for the tagged-part
correlator, Eq.~15!. The quantities for the tagged partic
motion are close to the ones for the coherent correlatorfq(t)
except for values ofq smaller than, say,q510. This differ-
ence was observed already for the HSS@6#. Since we will not
be concerned with smallq in the following, we restrict the
discussion to the coherent dynamics and imply that the s
is applicable also to the incoherent part with only min
changes. In comparison to the HSS thef q* , hq* , f q

s* , and
hq

s* are extended over a broaderq range. The maximum in
hq

s is shifted fromq'13 to q'25 reflecting the smaller lo
calization length in the SWS as noticed before, cf. Ref.@11#.
We see in the lower panel of Fig. 1 that the distributions
the correction amplitudesKq andKq

s share that trend of be
coming broader from the HSS to theA4 singularity of the
SWS. The zero inKq moves from aroundq'14 in the HSS
to q'32 in the SWS. In addition, the amplitudes are shift
to lower values for smallq.

Having specified the characteristic parameters for theA4
singularity, the solution at any point in the control-parame
space can be compared to the asymptotic approximatio
the control parameters are translated into separation pa
eters«1 and «2. As done for the schematic models in Re
@24#, we start by determining the surfaces where the q
dratic corrections in Eq.~8! are zero,B2(q)5B21KqB2

50. On these surfaces in the control-parameter space
logarithmic decay is expected to show up as straight
around the plateauf q* , as the cubic and quartic terms in E
~8! vanish because ofB35B45m350 at theA4 singularity,
cf. Eq. ~11c!. We get a different surface for each wave vec
q and show typical examples in Fig. 2 for a cut through t
glass-transition diagram ford5d* . For q57.0 one getsKq
521.81. The solution ofB2(V)51.81B(V)2 yields the
chain line labeledB2(7.0)50 in Fig. 2 and is lying in the
arrested region close to the line of liquid-glass transitio
Since theKq depend smoothly onq, the evolution of the
03140
x-

m-

c-
s

le

e
r

f

r
as
m-

-

he
e

r
e

.

curve whereB2(q)50, can be understood by inspecting th
parametersB andB2. The squareB2 is always positive and
proportional to«1(V), cf. Eq. ~7!, thereforeKqB2 is propor-
tional to Kqu«1(V)u and shares the sign ofKq . Inserting
m350 and z50.1216 into Eq. ~11b! yields B2(V)
50.111«1(V)20.152«2(V), which has to be positive to
comply with B2(q)50. The second separation parameter
negative,«2(V),0, below the dotted curve for«250 in
Fig. 2. In addition, the valueu«2(V)u on the lineB2(7.0)
50 is larger thanu«1(V)u which we can also infer from the
fact that the line«150 is closer than the line«250. We now
chose a point on the lineB2(7.0)50, keep the first separa
tion parameter fixed, say«15«18 , and move to higher value
for Kq , e.g., forq520.2 whereKq520.966. B2 stays the
same and the termKqB2 increases. To ensure thatB2(20.2)
50, the valueB2(V) has to decrease. We can achieve th
by moving closer to the line«250. For fixed«18 this implies
a shift to lowerw and higherG. Consequently the entire line

FIG. 1. Wave-vector dependent amplitudes characterizing
A4 singularity, Eq.~23!, for coherent and tagged particle correlato
of the square-well system~SWS!. In the upper and middle panel
the critical glass-form factorsf q* , Eq. ~2!, and the amplitudeshq*
are shown as full lines, respectively. The dashed lines represen
values for f q

s * , Eq. ~4!, andhq
s * , Eq. ~16a!. For the hard-sphere

system~HSS!, f q
sc and hq

s are shown as dotted lines. The lowe
panel shows the correction amplitudesKq* , Eq. ~10!, andKq

s * , Eq.
~16b!, as full and dashed lines, respectively. A square atq524.2
indicates the corrections for the path calculated for Fig. 2 and
correlators shown in Fig. 3. The correction amplitudesKq (2•2)
and Kq

s (•••) for the HSS are shown for comparison. The unit
length here and in the following figures is the hard-core diameted
of the particles.
5-5
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whereB2(q)50, is rotating clockwise around theA4 singu-
larity as Kq increases. This is seen for the chain li
B2(20.2)50 in Fig. 2. SinceKq

s is monotonic increasing
with q andKq has the same trend when neglecting the sm
oscillations, Fig. 1, the lineB2

s(q)5B2(V)1B(V)2Kq
s50

also rotates clockwise with increasing wave vectorq.
The variation of the linesB2(q)50 described above de

pends only on the angle at which the lines«150 and «2
50 intersect at theA4 singularity. This intersection is in a
sense generic that it is shared by the close-byA3 singularities
of the SWS. It applies also to theA4 singularities of the other
potentials which are similar to the square well. This is
because the functionals determining the separation pa
eters depend on quantities like the structure factors and
glass-form factors which are similar for different potentia
@13#. For a given wave vectorq, the lineB2(q)50 may or
may not lie in the liquid regime depending onKq . For the
SWS atd5d* we get a range of21&Kq&0.4 correspond-
ing to 20&q&35, where a lineB2(q)50 is found in the
liquid regime. We illustrate this by adding lines forq
524.2,q527.0 and forKq50 to Fig. 2. The vanishingKq is
corresponding toq'32.3 yielding a lineB2(q)50 still in
the liquid. Forq*35, the latter line rotates further aroun
the A4 singularity and into the arrested regime beyond
almost horizontal line of liquid-glass transitions.

We select a wave vectorq524.2 with Kq520.596 as
indicated in Fig. 1 by a square and choose a path on the
B2(24.2)50 marked by the plus symbols in Fig. 2. Forn
51,2,3, the control parameters are (G,w)5(3.312,0.5125),
(4.271,0.5250), and (4.453,0.5274), respectively. The s
tions are shown in Fig. 3 together with the leading appro
mation~dotted!, Eq. ~7!, and the next-to-leading approxima

FIG. 2. Curves of vanishing quadratic correction in Eq.~8! at
the A4 singularity of the SWS,B2(q)50 ~dash-dotted!, for q
57.0, 20.2, 24.2, 27.0, and forKq50 as labeled. The full line
shows a part of the glass-transition diagram for constantd5d* .
The lines of vanishing separation parameters«1(V) and«2(V) are
shown by a broken and a dotted line, respectively. For the w
vector q524.2, a path on the curveB2(24.2)50 is marked (1)
and labeled byn, for which the correlators are shown in Fig.
Staten52 is analyzed also in Fig. 4. For the points (m) labeled a,
b, and c the decay is shown in Figs. 5 and 12.
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tion, ~dashed! Eq. ~8!. The time scalest are matched at the
plateauf q* for the leading approximation and at the reno

malized plateausf q* 1 f̂ q for the first correction. We recog
nize that forn53, Eq. ~8! accounts for more than ten de
cades in time with a relative accuracy better than 5%. T
leading approximation is acceptable on that level for n
decades. Forn51 two and more than one decade are co
ered, respectively. Five and three orders of magnitude in t
are achieved forn52. Forn51,2,3, the leading approxima
tion describes at least 30% of the complete decay and w
including the correction, 65% are covered on the chosen
curacy level. The distance in the control parameterG from
the value at theA4 singularity is 25% forn51 and 4% for
n52, so no finetuning was necessary to obtain such la
windows for the logarithmic decay. The curven51 requires
about five decades for the complete decay which is wel
the reach of today’s computer simulation techniques@34#.

It was possible to describe part of the critical decay at
A3 singularity in a one-component model by the expans
in polynomials in lnt at a point away from the singularity
@24#. We therefore compare the critical decayfq* (t) with the
decay forn53 and indicate the point att'5000 where both
differ by 5% in Fig. 3. With only the leading correction a
our disposal, a 2% criterion was not fulfilled as for the on
component model, where also the next-to-leading correc
could be used@24#. The dashed line forn53 does not come
closer to the critical decay than 4%. Allowing for 5%, th
interval fromt'20 to t'4000 could be described. Howeve
at the A4 singularity the approximation in Eq.~8! always
yields a straight lnt decay as approximation on the chos

e

FIG. 3. Logarithmic decay at theA4 singularity in the SWS for
q524.2 on the path indicated in Fig. 2. The correlation functio
are shown as full lines for the statesn51, 2, 3 ~see text! and at
V5V* labeledfq* . The horizontal line indicates the critical pla
teau valuef q* for q524.2, short lines the renormalized platea

f q* 1 f̂ q . Broken lines show the approximation of Eq.~8!, 2(B
2B1)ln(t/t), dotted lines the approximation by Eq.~7!. Filled and
open symbols, respectively, mark the points where the approxi
tions deviate by 5% from the solution. The cross indicates the t
when the solution forn53 and the critical correlatorfq* differ by
5%. The unit of time here and in the following figures is given
a short-time diffusion coefficient ofD051/160.
5-6
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path with B2(q)50. This disagrees qualitatively with th
observed critical decay.

To identify correctly some decay that is linear in th
fq(t) versus logt diagram with the logarithmic decay pre
dicted by the asymptotic laws, Eq.~8!, we check if a differ-
ent correlator with a different correction amplitudeKq is not
linear in lnt at the same point in the control-parameter spa
For a two-component model a characteristic alternation
concave, linear and convex decay in lnt was found@24,33#.
Not both correlators could be linear, in lnt at the same time
For the SWS this check is performed at the pointn52 from
Fig. 2 by variation of the wave vectorq. For the wave vec-
tors q54.2 and 32.2 the correction amplitudes areKq
521.400 and20.0413, respectively. ThereforeB2(4.2)
,0 and B2(32.2).0. We expectfq(t) to be concave or
convex, accordingly, as is demonstrated by the inset of
4. The rescaled correlatorsf̂q(t) displayed in the full pane
allow for a more detailed analysis. We see that the soluti
as well as the approximations clearly exhibit increased c
vature for largerq. Since the coefficient linear in lnt is not
depending onq, cf. Eq.~8!, the middle dashed line represen
the leading correction to all three correlators when the q
dratic terms are neglected. Forq524.2 we observe good
agreement over almost five decades as before, cf. Fig. 3
q54.2 and 32.2, however, the additional approximation
duces the range of applicability to less than one decad
marked by the filled symbols. Including the quadratic ter
from approximation~8! extends this range by half a deca
to later times and to earlier times by one and almost t
decades forq54.2 and 32.2, respectively. The time windo
defined by a 5% deviation from approximation~8! is larger

FIG. 4. Logarithmic decay at theA4 singularity for varying
wave vectorq. The inset shows the correlation functionsfq(t) at
staten52 from Fig. 2 for wave vectorsq54.2, 24.2, and 32.2 from
top to bottom and the short horizontal lines show the correspon
critical plateau valuesf q* . The full panel shows the same correl

tion functions rescaled according tof̂q(t)5@fq(t)2 f q* 2 f̂ q#/hq* as
full lines and labeled by the respective wave vectors. Dashed l
show the asymptotic laws, Eq.~8!. The deviations of the approxi
mations from the solutions of 5% are marked by the open symb
Filled symbols forq54.2 (.) and q532.2 (j) show the 5%
deviation from the additional approximation of neglecting quadra
terms in Eq.~8! ~see text!.
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by one and two orders of magnitude forq524.2 than forq
532.2 and q54.2, respectively, what indicates tha
q-dependent higher-order corrections significantly influen
the range of applicability for the leading correction~8!.

The time scalet in Fig. 4 was matched forq524.2, so
the violation of scale universality inherent to an approxim
tion like in Eq. ~8! leads to different timest(q), where the
correlators for differentq cross their respective renormalize
plateau f q* 1 f̂ q @24#. The representation with the rescale

f̂q(t) is particularly sensitive to these deviations since
point where the plateau is crossed is required to be z
f̂q(t/t)50. In Fig. 4 we see that the line crossing the zero
slightly broader than a single curve. The deviations int(q)
are small enough to not exceed the numerical grid for
time axis which aroundt52988 is given byDt5172. So we
interpolate to get forq54.2, 24.2, and 32.2,t(q)52899,
2988, and 3017, respectively. These differences do not in
duce larger errors in the analysis carried out above.

In order to change from convex to concave behavior
can also change the control parameters. For states abov
line B2(24.2)50, we expect concave behavior,B2(q),0,
for states below, convex decay,B2(24.2).0. For a demon-
stration of this result, the rescaled correlatorsf̂q(t/t) at the
states labeled a, b, c in Fig. 2 are divided by the prefac
(B2B1) of Eq. ~8!. This way the part of the decay that
linear in lnt shows up as straight line with slope2 ln 10
in Fig. 5. Approximations~8! are shown as dashed line
for each state representing2 ln(t/t)1@B2(24.2)/(B
2B1)# ln2(t/t). For state b the approximation is identical t
2 ln(t/t) and the solution follows that line over five decad
before 5% deviation is reached. The states a and c are
sen to have the same value forB2B1'0.015 andB2(24.2)

g

es

s.

c

FIG. 5. Logarithmic decay at theA4 singularity for the three
states marked by triangles in Fig. 2. The inset shows the correla
functionsfq(t) for q524.2. The plateau valuef q* is indicated by

the short horizontal line. The full panel showsf̂q(t)5@fq(t)2 f q*

2 f̂ q#/hq divided by the respective values for (B2B1) at the three
states specified. The dashed curves show the result from Eq.~8!.
Filled squares and circles mark the points where curve a an
deviate by 5% from2 ln(t/t), respectively. The deviation for curv
b (n) for short times is att/t'1024 and not included in the figure
5-7
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570.0020, respectively. The solutions at state a and c
low the 2 ln t law closely within a 5% margin for two de
cades or one decade, respectively, which is significantly
than found for state b. We can infer from Fig. 2 that at st
a the quadratic corrections would vanish again if we w
from q524.2 to the higher wave vectorq527.0. A scenario
similar to the one shown in Fig. 3 can be found.

The procedure outlined in Figs. 2– 5 can be summari
as follows. From the higher-order singularities there eman
surfaces in the control-parameter space for a specific w
vector q̄ where the quadratic term in Eq.~8! is zero, cf. Fig.
2, and the decay is linear in lnt. Moving closer to the singu-
larity on that surface, the window in time where the logari
mic decay is a valid approximation increases, cf. Fig. 3.
a fixed point on that surface the decay is concave forq,q̄

and convex forq.q̄, cf. Fig. 4. For fixedq̄, the change from
concave to convex is achieved by crossing the mentio
surface from above in the sense exemplified in Fig. 5.

The coupled quantities share the leading asymptotic
havior of the density correlators. As a consequence of
factorization theorem of MCT, only the glass-form facto
and the critical amplitudeshq are different for the coupled
quantities@35#. The leading corrections imply a violation of
generalized factorization theorem. These are proportiona
the correction amplitudeKq . Since for large wave vectors
say q.10, the quantitiesf q

s , hq
s , and Kq

s are close to the
ones for the coherent correlator, the approximation for
tagged particle correlation functionsfq

s(t) for these largeq
is the same as forfq(t). So the discussion forfq

s(t) is
already exhausted by Fig. 1. Not much could be gained fr
repeating the discussion of the preceding section forfq

s(t).

IV. MEAN-SQUARED DISPLACEMENT NEAR AN A4

SINGULARITY

According to Eq. ~20a!, dr 2(t) is expected to exhibit
power-law behavior around the plateau 6r s

c2 provided the
term b2 vanishes. The power-law exponentx is determined
explicitly in Eq. ~21b! by the localization length and th
critical amplitude, which are

r s* 50.042 55, hMSD* 50.004 051. ~24!

The inset of Fig. 6 shows the line whereb2 from Eq.
~20a! vanishes. This line is almost identical to the one
B2(24.2)50 shown in Fig. 2 for the correlatorsfq(t). The
MSD for three states on that line is shown in the full pan
It is described well by the approximation in Eq.~18!. For
statesn51,2,3, one, three, and six decades are covered
deviations less than 5%, so the approximation yields a
scription of similar accuracy as for the correlation functio
in Fig. 3. The leading result from Eq.~7! describes the re
laxation proportional to lnt ~dotted! which always has nega
tive curvature in the double-logarithmic representation a
does not provide a valid description forn51 and 2. The
reason for the qualitative difference between the solution
the MSD and the leading logarithmic law is that the corre
tions proportional toKMSD521.708 are large, Therefore
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KMSDB21B2 is never close to zero in the liquid regime e
cept very close to theA4 singularity. This is seen forn53 in
Fig. 6 where lnt develops a straightened decay around
plateau.

The power law~21! provides a different formulation of a
leading-order approximation and is shown in Fig. 6
straight line forn51,2,3. Forn51 this describes the MSD
for more than a decade as indicated by the squares. Fn
52 three decades are covered and six decades of powe
behavior are identified for curven53. So the accuracy is
similar to the one provided by the approximation in next-
leading-order by Eq.~18!. Both asymptotic descriptions fal
on top of each other around the plateau and therefore
roborate that the reformulation~20a! is justified. The inter-
pretation of the behavior of the MSD is then much simp
when considering the power laws instead of the logarith
of time. The decreasing slope of the relaxation when
proaching theA4 singularity as in Fig. 6 is just the exponen
x from Eq. ~21b! which decreases asB with the square root
of the separation parameter«1, cf. Eq.~7!. The same param
eterB is the prefactor of the leading-order logarithmic dec
in Eq. ~7!. In that sense Fig. 6 is the analog of Fig. 3.

The termb2 in Eq. ~20a! varies regularly in the separatio
parameters«1 and «2, andb2 is positive above the lineb2
50 and negative below. Therefore, similar to the case for
correlators in the linear-log representation, in the doub
logarithmic representation, the behavior of the MSD can
changed from convex to concave when crossing the line
vanishingb2. This is demonstrated for three states in Fig.
State b is identical to the staten52 in Fig. 6 and obeysb2
50. The power law (t/t)x is shown as straight full line. The

FIG. 6. Subdiffusive power law in the mean-squared displa
ment ~MSD!. The solutions for states 1, 2, and 3 in the inset a
shown as full lines in the full panel together with the leading~dot-
ted! and next-to-leading~dashed! approximations by Eq.~18!. The
long horizontal line represents 6r s*

250.010 86, the short horizonta

lines the corrections to the plateau, 6(r s*
22 r̂ s

2), cf. Eq. ~19c!. The
straight full lines show the power law (t/t)x, Eq. ~21a!, with expo-
nentsx50.365, 0.173, and 0.0878 for statesn51, 2, 3. The filled
symbols show the points where the solutions deviate by 5% fr
the leading-order power laws. The inset shows part of the gla
transition diagram ford5d* and a chain line whereb250, cf. Eq.
~20b! ~see text!.
5-8
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time scalet is matched at the plateau 6r s*
2 . Moving to state

c below the chain line, (G,w)5(3.42,0.525), a relaxation i
obtained which clearly exhibits negative curvature and
consistent with the calculated valueb2520.007 35. The
leading-order power law with exponentx50.285 fulfills a
5%-deviation criterion for two decades which accidenta
extends to short times as the approximation crosses the
lution twice. Reducing the allowed deviation to 4% wou
reduce that interval to less than a decade. If we include
term proportional tob2 from Eq. ~22b! and renormalize the
exponent tox8, Eq. ~22a!, the approximation agrees with th
solution for three decades. It is obvious from a comparis
with curve 1 in Fig. 6 that the leading-order power law d
scribes that solution better than it describes the solutio
state c in Fig. 7 for comparable values fort and the plateau
correctionr̂ s

2 . The deviation to convex behavior is demo
strated by the dashed line at curve a, (G,w)5(4.57,0.523).
Again the range of validity is extended to earlier times b
for later times no improvement can be found.

In Fig. 6 the dashed line, which describes the next-
leading-order approximation of Eq.~8!, deviates from the
leading-order power law~21a! below the plateau where th
range of validity for the power law extends to much smal
times than justified by its derivation. We also recognize t
the exponentx overestimates the slope of the relaxation
Figs. 6 and 7. In Eq.~21b! only the termB from the leading-
order approximation is present. Taking into account
renormalization of this prefactor toB2B1 in Eq. ~22a!
changes the exponent for state b fromx50.173 to x8
50.155. By comparing the full line for the leading result a
the dashed line for the corrected one in Fig. 7, we find t

FIG. 7. Concave and convex deviations from the power law,
~21! in the MSD. Solutions for the states a, b, and c are shown
full lines, approximation~21! as straight full lines for exponentsx
50.147, 0.173, and 0.285, respectively. Filled symbols denote
5% deviation of the solutions from the leading-order power la
For state b, the dashed line exhibits the corrected power law
x850.155, Eq.~22a!, and the open triangle the 5% deviations
the solution from it. Dashed lines show the approximation by
~22b! for a and c withb250.003 63 and20.007 35, respectively
and x850.143 and 0.214. The open symbols mark the 5% de
tions. The inset replots the one from Fig. 6 and shows by the cro
the state points a, b, and c.
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the range of applicability is shifted to later times by o
decade and extended by two decades. The corrected p
law is valid from t5102 to t553106 and comparison to
Fig. 6 shows that approximation~8! covers a similar range
The accidental extension to shorter times is removed.
approximation now covers the range also a naive power-
fit would yield.

In summary, the correction amplitudeKMSD for the MSD
does not vanish within the liquid regime. Therefore a log
rithmic relaxation law can be detected only for states v
close to the singularity. However, there is a line of vanish
corrections for the logarithm of the MSD. Here a logarithm
relaxation can be observed and this describes a subdiffu
power law of the MSD. We can interpret Fig. 7 as the ana
of Fig. 5. Some quadratic correction to a leading-order lin
behavior can be set to zero on a surface in control-param
space. Departing from that surface in opposite directions
troduces either positive or negative corrections and the lin
behavior is changed to convex or concave.

V. A3 SINGULARITIES

An A3 singularity is not located on a liquid-glass
transition line but is the endpoint of a glass-glass-transit
line @2#. The parameterm3 is no longer vanishing and ford
50.03 we getm350.109 andz50.157. For thisA3 singu-
larity the q-dependent amplitudes are shown in Fig. 8. N
qualitative changes are obvious compared to the res

.
s

e
.
th

.

-
es

FIG. 8. Glass-form factorsf q
0 and f q

s0 , amplitudeshq
0 andhq

s0 ,

and correction amplitudesKq
0 and Kq

s0 at theA3 singularity for d
50.03. Line styles are the same as in Fig. 1. The values at theA4

singularity,f q* ~dotted!, hq* ~dash-dotted!, andKq* ~dash-dotted!, are
shown for comparison. The values forq524.2 and 45.0 are marke
by diamonds. The inset showsKq for 4,q,11 for d5d* ~chain
line!, 0.03 ~full line!, and 0.02~dotted line!.
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shown in Fig. 1 for theA4. The smaller length scaled
50.03 for the attractive well introduces a smaller localiz
tion length, and this implies the broader distributions
wave-vector space. So the trend seen when changing
the HSS to theA4 singularity of the SWS is continued whe
approachingA3 singularities at smallerd. There are only two
notable exceptions at smallerq. First, the value forKq at the
position of the structure factor peak is minimal for theA4 ,
21.815Kq* ,Kq

0521.72. The inset shows this regio
enlarged ford5d* , 0.03, and 0.02, demonstrating thatKq at
the peak is again larger for theA3 singularity with smaller
well width 0.02, whereKq521.69. Second, the zero-wave
vector limit of Kq

s is also smallest at theA4 singularity. The
respective values ford5d* , 0.03, and 0.02 are21.71,
21.64, and21.62. Therefore, one experiences the strong
q-dependent corrections at theA4 singularity.

Figure 9 shows the analog of Fig. 2 for a cut through
glass-transition diagram atd50.03. The lines«150 and
«250 for the A3 singularity are obtained from a smoo
transformation of the corresponding lines at theA4 singular-
ity, and they appear in similar locations in the diagram. T
line «250 is again very close to the almost horizontal line
transitions. Just below, we find again the line whereB2(q)
50 whenKq50. However, this now representsq'57.5, cf.
Fig. 8, which is a value almost twice as large as for
corresponding line in Fig. 2. For the wave vectorq524.2 we
find the line, whereB2(24.2)50, completely in the glass
state. Taking the same value for the correction amplitude
for q524.2 at theA4 , Kq* '20.6, we obtainq545.0, cf.
Fig. 8 and the line labeled accordingly in Fig. 9. Since t
latter line comes close to the liquid-glass-transition line
take that as a reference and estimate the range of wave
tors where the quadratic corrections can be put to zero in
liquid regime to 45&q&70. The lines whereB2(q)50 can
be rather sensitive toq variation. This is demonstrated by th

FIG. 9. Curves of vanishing quadratic correction in Eq.~8! for
the A3 singularity (s) at d50.03. Thed50.03 cut through the
glass-transition diagram is displayed by full lines. The various lin
are shown in the same style as in Fig. 2 and labeled accordin
The lineb250, cf. Eq. ~20b!, indicates the analogous line for th
MSD, cf. inset of Fig. 6.
03140
-

m

st

e

e
f

e

as

e
e
ec-
e

curveB2(46.2)50. Although the change in the wave vect
is relatively small in comparison toq545.0, the values for
Kq differ by more than 20% for fixedq and induce a rotation
of the lineB2(q)50 by quite a significant angle.

Having in mind the drastic changes in the lines whe
B2(q)50, it may come with some surprise that the line f
the MSD, whereb250, stays rather robust and accessible
the liquid regime as seen in Fig. 9. The variation inq for the
amplitudes is reflected in changes of the localization leng
For theA3 singularity atd50.03 we get

r s
050.0243, hMSD

0 50.001 36. ~25!

From Eq. ~24! one getsr s* /r s
051.75 and the square of th

latter ratio, r s*
2/r s

02'3, is the same ashMSD* /hMSD
0 . Since

only the fractionhMSD/r s
2 could introduce larger modifica

tions in Eq.~20a!, the changes inb2 cancel approximately
and the line specified byb250 experiences only minor de
formations whend is varied. The wave vector for which th
lines B2(q)50 and b250 are closest to each other, isq
545.8 at theA3 singularity ford50.03.

To corroborate the finding for the MSD from the prece
ing paragraph, the parameters for the asymptotic descrip
of the MSD at theA3 singularities are shown in Fig. 10. Th
m3 vanish when we approach theA4 singularity. The de-
crease close tod* is described asymptotically by a squar

s
ly.

FIG. 10. Parameters for the asymptotic description at theA3

singularities of the SWS for varyingd. Panel A displaysm3 (m),
Eq. ~13!, and z (L), Eq. ~12!. The dashed curve shows th
asymptoticAd* 2d law for the m3. The localization lengthr s

0 is
shown in panel B. The correction amplitudesKMSD

0 and the ratios
hMSD

0 /r MSD
02 are shown in panels C and D.
5-10
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root variation,m3}Ad* 2d, shown by the dashed line@33#.
The smallness ofm3 indicates that all theA3 singularities are
already influenced by the proximity of the close-byA4 sin-
gularity. One can take advantage of this finding and concl
that the terms proportional tom3 in Eq. ~8! are small. More-
over, one may neglectB3 andB4 in Eq. ~11c! entirely with-
out introducing large additional errors. The leading corr
tion to the logarithmic decay laws is then only quadratic a
for the A3 singularities. Parameterz varies regularly around
a finite value atd* but shares the variation ofm3 at d* due
to Eq. ~13!. Panel B shows the decrease of the localizat
length at theA3 singularity whend is reduced. A change o
40% in r s

0 from d5d* to d50.03, cf. Eqs.~24! and~25!, is
reflected in the broadening of the distributions inq seen in
Figs. 1 and 8. This broadening is responsible for the la
variation in q when comparing Fig. 2 with Fig. 9. It wa
noted in the discussion of the inset of Fig. 8 thatKq intro-
duces the strongest corrections for the correlation functi
at theA4 singularity. This is also true for the MSD as seen
panel C forKMSD which is largest in absolute value at theA4
singularity. The variation inKMSD with d is, however, small
and does not introduce significant changes toa2 in Eq. ~20b!.
The amplitudehMSD is the remaining parameter entering E
~20b! that could alter the location of the lineb250 in the
glass-transition diagram. We noted above that only the r
hMSD/r s

c2 needs to be considered which is shown in panel
From there one infers that the ratio varies only by less t
5%. We can conclude that the line of power-law variati
for the MSD stays in the liquid regime even whend is
changed significantly.

VI. HARD-CORE YUKAWA SYSTEM

The Al singularities occurring in MCT are topologicall
stable, smooth changes in the control parameters do not c
lenge their existence. Therefore, the results for the SWS
be applied also to other potentials with a short-ranged att
tion. Nevertheless, the deformation of the potential mi
introduce changes large enough to be relevant for the de
tion of the higher-order singularities. Among several pote
tials the HCY system was found to differ by up to 20%
certain properties at theA4 singularity from the SWS@13#.
Since other potentials differ less we use that system a
second example for anA4 singularity.

Figure 11 shows the analog of Fig. 2 for the HCY. Fo
comparison, theA4 singularity in the SWS was mapped o
top of theA4 singularity in the HCY by scaling inG with a
factor of 2.98 and by a shift inw of 0.0065. The same trans
formation was applied to the lines whereB2(q)50 in the
SWS. Figure 11 displays theB2(q)50 lines for the HCY
that come closest to the ones shown in Fig. 2 after the m
ping. The correction amplitudeKq for the HCY vanishes a
q'34, and the range in wave vector for whichB2(q)50 is
lying in the liquid regime is shifted to higher wave vector
21&q&36 or 20.9&Kq&0.2, in comparison to the SWS
For q527.0 we get the lineB2(q)50 for the HCY that is
closest to the lineb250 for the MSD as compared t
B2(24.2)50 in the SWS.
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VII. CONCLUSION

Logarithmic decay or, equivalently, 1/f noise in the fluc-
tuation spectra, can arise in a number of situations an
explained by various approaches@36#. In the log-linear rep-
resentation appropriate for the correlation functions, this
cay exhibits a straight line. To discriminate the logarithm
decay laws originating from higher-order glass-transition s
gularities within MCT@24# from other possible scenarios on
needs criteria to distinguish one from the other. The the
makes specific predictions where in the control-parame
space the logarithmic decay is expected and how the cor
tions introduce deviations from that behavior. In this pap
the scenarios are discussed in quantitative detail for an
ample relevant for studies of colloidal dynamics, the SW
To proceed, specific cuts through the three-dimensional
rameter space are considered. Here, lines are identified w
the corrections quadratic in the logarithm of time vanish
a chosen wave vectorq, cf. Fig. 2. These lines emanate fro
the higher-order singularity and rotate clockwise around
higher-order singularity with increasingq. The correlation
functions for states on these lines exhibit decays that
linear in the logarithm of time for several orders of magn
tude in time, cf. Fig. 3. In leading order, the slope of t
decay is given by the square root of the distance from
higher-order singularity, Eq.~7!. The mean-squared displace
ment MSD displays a power law, Eq.~21a!, that is valid on a
similar line in the control-parameter space, cf. Fig. 6. T
exponentx of this subdiffusive behavior is also decreasi
with the square root of the distance. Both the logarithm
decay and the power law are accessible in the liquid regi
The logarithmic decay is predicted for wave vectorsq, which
are equivalent to values of about three to four times the fi
peak of the static structure factor.

In a semilogarithmic representation for the correlati
functions and a double-logarithmic plot of the MSD, chara
teristic convex and concave relaxation patterns are fo
when states are chosen that are off the specified lines

FIG. 11. Cut through the parameter space for the hard-c
Yukawa system ford5d* . Line styles are the same as in Fig.
The wave vectorsq515.0, 21.4, 27.0, and 28.2 are approximate
equivalent toq57.0, 20.2, 24.2, and 27.0 in Fig. 2, respective
after rescalingG by a factor of 2.98~see text!.
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Figs. 5 and 7. Due to the variation of the correction amp
tudeKq in Fig. 1, a similar variation from convex to concav
behavior is introduced by changes in the wave vector a
fixed point in control-parameter space, cf. Fig. 4. These
viations from logarithmic behavior provide a test for th
clear identification of dynamical scenarios that are consis
with Eq. ~8! and hence originate from higher-order singula
ties.

When the localization at the higher-order singularity
changed by either deforming the shape of the potential o
moving toA3 singularities at smaller ranges of the attractio
the logarithmic decay of the correlation functions is shift
to higher wave vectors. Whereas the difference between
SWS and the hard-core Yukawa system at theA4 singularity
is modest, cf. Fig. 2 and Fig. 11, the lines of vanishing q
dratic correction change drastically at theA3 singularity, cf.
Fig. 9. In contrast, the line where the subdiffusive power l
for the MSD is valid, is robust against changes of the w
width and the potential shape, cf. Figs. 6, 9, and 11.

For comparing the solutions of the equations of motio
Eqs. ~1!, ~3!, and ~5!, with the asymptotic expansions, Eq
~8!, ~15!, and ~18!, all parameters are calculated explicit
except the time scalet which is matched at the plateau. In a
experiment or a computer simulation only the correlators
available directly. We show these in Fig. 12 for two sta
specified in Fig. 2 for different wave vectors. Since state b
closer to theA4 singularity, the range of validity for the
asymptotic approximation is larger than for state a. Es
cially the extension of the linear-log decay at some spec
wave vector increases when moving closer to the singula
As noted in connection with Fig. 4, the range of validity f
the approximation by Eq.~8! may vary withq. Partly for that

FIG. 12. Correlators for states a~panel a! and b~panel b! from
Fig. 2 for wave vectorsq54.2, 20.2, 24.2, 27.0, 32.2, and 36
from top to bottom. Full lines show the solutions of the MCT equ
tions for the SWS, dashed lines the approximation by Eq.~8!. Tri-
angles mark the 5% deviation of the correlator from the appro
mation forq527.0 and 24.2, respectively. The dotted vertical lin
indicate the time scalest, the short horizontal lines the correcte

plateau valuef q1 f̂ q for q527.0 and 24.2, respectively.
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reason a larger absolute curvature is attributed to the corr
tors by the approximation than a fit would do. A free fit cou
identify logarithmic behavior at state b forq520.2 from t
'5 to t'53107 with a deviation of at most 5%. In addi
tion, fitting the correlator forq524.2 also fort>105 would
yield positive curvature. Therefore, a free fit in that region
the control-parameter space tends to find the logarithmic
cay at a somewhat lower wave vector than predicted by
~8!. However, with a choice of the time scalet that is rea-
sonably close to the theoretical value, the concave and c
vex decay patterns can still be identified unambiguously
the correlators without invoking additional assumptions.

A recent molecular dynamics study of a binary mixture
square-well particles identifies a power law withx50.28 for
the MSD over four decades and a related logarithmic de
of the correlation function at a wave vectorq516.8 @37#. A
scenario similar to Fig. 12 was found for the correlati
functions: Upon increasingq, a change from concave to con
vex decay is observed. For a second state, faster decay
larger prefactors for the logarithmic decay is reported
gether with a larger exponent,x50.44, for the power law in
the MSD. This finding is consistent with the assumption th
this second state is further from the supposed higher-o
singularity than the first state. Different from Fig. 12, in th
simulationd was changed to vary the distance whilew andG
were kept fixed. The logarithmic decay was shifted to
higher wave vector for smallerd @37#. This is consistent with
the expectation that can be inferred from Figs. 2 and 9
observing, e.g., the rotation of the lineB2(24.2)50. The
analysis of the simulation data allowed for a fit of the valu
for f q* andhq* @37#. These are shown in Fig. 13 together wi
the theoretical predictions for the SWS. The fitted parame
for both states almost fall on top of each other forf q* . The

-

i-
FIG. 13. Comparison off q andhq from the fit to the simulation

of two different states@37# with the valuesf q* andhq* for the SWS
from Fig. 1. For the comparison in the lower panel the theoret
values are multiplied by 0.14.
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amplitudehq* is deduced from the simulation data only up
some overall factor. It can be matched reasonably by a m
tiplication of the theoretical prediction forhq* . The exten-
sions inq for the values obtained from MCT for the SWS a
narrower, the width at half maximum forf q differs by 15%.
A similar difference was observed for a binary mixture
hard spheres and agreement between theory and simul
could be improved by using the structure factor from t
simulation as input to the MCT calculations@38#. For the
amplitudehq* the locations of the maxima disagree by 15
and the width is different by 25%. The deviations forq,7
in both f q andhq can be attributed to the effects of mixin
@38#.
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In summary, scenarios for logarithmic decay near high
order glass-transition singularities are presented in this w
Some essential predictions are supported by the result
computer simulations. This should motivate further inves
gations in colloidal systems with short-ranged attraction.
particular, the power-law behavior for the MSD including th
deviations might be accessible to experiments.
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@27# W. Götze and M. Lücke, Phys. Rev. B13, 3825~1976!.
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