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Logarithmic relaxation in a colloidal system

M. Sperl
Physik Department, Technische Universitéiinchen, 85747 Garching, Germany
(Received 18 May 2003; published 19 September 2003

The slow dynamics for a colloidal suspension of particles interacting with a hard-core repulsion comple-
mented by a short-ranged attraction is discussed within the frame of mode-coupling theory for ideal glass
transitions for parameter points near a higher-order glass-transition singularity. The solutions of the equations
of motion for the density correlation functions are solved for the square-well system in quantitative detail by
asymptotic expansion using the distance of the three control parameters—packing fraction, attraction strength
and attraction range—from their critical values as small parameters. For given wave vectors, distinguished
surfaces in parameter space are identified where the next-to-leading-order contributions for the expansion
vanish so that the decay functions exhibit a logarithmic decay over large time intervals. For both coherent and
tagged particle dynamics the leading-order logarithmic decay is accessible in the liquid regime for wave
vectors of several times the principal peak in the structure factor. The logarithmic decay in the correlation
function is manifested in the mean-squared displacement as a subdiffusive power law with an exponent varying
sensitively with the control parameters. Shifting parameters through the distinguished surfaces, the correlation
functions and the logarithm of the mean-squared displacement considered as functions of the logarithm of the
time exhibit a crossover from concave to convex behavior, and a similar scenario is obtained when varying the
wave vector.
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I. INTRODUCTION cusp and swallowtafl9—11]. In these systems, the hard-core
repulsion is supplemented by a short-ranged attraction, e.g.,
The dynamics in an interacting many particle system isn the square-well systef8WS. A cusp singularity is the
conveniently described by density autocorrelation functionendpoint of a line of glass-glass transitions that arises if two
¢q(t) for time t and wave vectog. These correlation func- different mechanisms of arrest are of the same importance. In
tions can be measured in both experiment and computehe SWS the first mechanism is the hard-core repulsion that
simulation[1]. Mode-coupling theory for ideal glass transi- causes a transition as in the HSS via the well known cage
tions (MCT) discusses the transition from a liquid to a glasseffect. The second mechanism leading to arrest is bond for-
as a bifurcation in the long-time limit of the correlatgy(t) mation introduced by the attractive part of the potential. This
[2]. In the liquid state, the correlation function decays tolatter transition was proposed as relevant for the transition to
zero. If a control parameter, say density, exceeds some crita gel[10]. If the difference in the two mechanisms is less
cal value, the long-time limit changes discontinuously frompronounced, the glass-glass transitions vanish and give rise
zero to a finite value, a glass transition occligd. This  to anA, singularity. In the SWS this happens as the range of
liquid-glass transition is identified with afy, or fold singu-  the attraction is increasddl]. The range of attraction con-
larity [4] in the equations of motion of MCT. The simplest sidered here is of order less than 20% of the particle diam-
example for a liquid-glass transition is found in the hard-eter and the strength is about seveésgl. This is accessible
sphere systentHSS), where the interaction potential among in colloid-polymer mixtures with nonadsorbing polymer
the particles is zero unless their mutual separation becomesghich is well under control experimentallyl2]. Higher-
smaller than their diameter where the potential becomes inerder singularities have also been identified for a number of
finitely repulsive, thus preventing the particles from overlap-short-ranged potentials with shapes differing from the SWS
ping. The HSS is the system MCT was applied to fif  yielding certain quantitative trends but no qualitative
and it is also the system for which the most detailed predicehangeg13].
tions have been worked o(ib,6]. Close to the singularity, In addition to the success of MCT for the description of
the equations of motion can be expanded in asymptotic sehe HSS, two findings support the use of this theory for the
ries. This yields a two-step decay with two related powerdescription of colloids with attraction. First, a reentry phe-
laws for the short-time and the long-time decay at a liquid-nomenon was predicted by the theory where a glass state is
glass transition[2]. The HSS can be realized in colloidal melted upon increasing the attractigh11]. This was subse-
suspension$7]. Experiments in these systems lead to thequently found in several experimerit4,15 and computer
conclusion that MCT is able to describe the main aspects ofimulation studie$15—-18. Second, there are indications of
the glass transition qualitatively and some aspects evelvgarithmic decay19] and related anomalous decd26,17|
quantitatively[8]. that are consistent with scenarios found within M[3T11].
MCT can also exhibit other singularities than the fidd. ~ To investigate the dynamics in such systems, apart from
These higher-order singularities were predicted recently t@omputer simulation dynamic light scattering has already
occur for colloidal systems with short-ranged attractionbeen used to determine correlation functi¢28,14,19. Di-
whereA; andA, singularities were found that are also called rect imaging techniques are available to determine also the
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mean-squared displacemé&MSD) with high precisiof21—  ture factor S, in the Ornstein-Zernike relationS,=1/]1
23]. The purpose of the present paper is the application of the- p c,], both depend on external control parameters such as
general theory for higher-order singularitig®l] to the SWS  density or temperatur€29]. For the SWS with hard-core
and the derivation of testable quantitative predictions for theliameterd, depth of the potentialiy, and range of the po-
correlation functions and the MSD. Certain scenarios haveential A, we get three dimensionless control parameters, the
been discussed before for schematic modi2#§. Some of packing fraction ¢=d3p#/6, the attraction strengtH’
these scenarios shall be identified also in the microscopie-u,/(kgT), and the relative well widtf=A/d. These can
model in the following. be combined to a control-parameter vector (¢,I',9).
The paper is organized as follows. In Sec. Il the equations |t is the long-time limit of the correlation function,
of motion and the asymptotic solution for the logarithmic lim __#q(t)="q, that determines whether a system is in the
decay are summarized and the subdiffusive power law f0|'. . . _ .
. . . : . iquid regime, wheref,=0, or in an arrested state, where
the MSD is derived. The theory is applied to tAg singu- 4 ;
- . ; . 0<fy=<L1. In the latter case, the valuég characterize the
larity in the SWS for the correlation functions in Sec. Il and d
. X . arrested glassy state and theare called glass-form factors
for the MSD in Sec. IV. Changes in the scenarios when mov- . S .
: . ) X L . or Debye-Waller factors. In the long-time limit, the equation
ing from theA, singularity toA; singularities are discussed ’ o .
) . ; of motion (1) reduces to an equation involving only the
in Sec. V, and Sec. VI contains a comparison to results Obr"node-cou ling functional and the glass-form factiar
tained for the hard-core Yukawa systériCY). Section VI piing 9

presents a conclusion. fol(1—1fq)=F[f]. 2

Il. ASYMPTOTIC SOLUTIONS Frequently studied is the dynamics of a single or tagged
particle with the single particle densify;(t)=exgiqry(t)].

For the correlation function of a tagged particl¢§(t)
=<p§*(t)p3>, similar equations as Eq$l) have been de-
rived [3,6],

We shall consider a system b particles with diameted
in a volumeV interacting with a spherical potential. When at
time t the jth particle is located afj(t) the density variables
are defined apy(t) == ;exdiqr;()]-

t
A. Equations of motion Tq0rba() + dg()+ Jomz(t—t')ﬁvﬁl’a(t')dt':0, (33
The equations of motion for the normalized density corr- . . _ o o
elators ¢q(t)=<P§(t)P&>/<|Pc§|2> within MCT, when With 74=1/(Dgq°). The short-time diffusion coefficient for a

Brownian dynamics for the motion in colloids is assumed,Single particle Do, again specifies the Brownian dynamics.

are given by[3,2,25,26 The mode-coupling functional for the tagged particle motion,
! ’ ’ ’ S s d3k P S2/ AL\ 2 S
Tq01Pq(1) + dg(t) + qu(t—t )dp g(t") dt’ =0. Folf.f1= (277)38,(50,( (gk) fkfldfﬂ' (3b)

(1a

o N _ o is also determined by the static structure of the liquid system
The initial conditions ar&),(0)=1. The microscopic time where c; is the single-particle direct correlation function
scale reads:-q=Sq/(Doq2). It is given by the short-time [29].
diffusion coefficientD, characterizing the Brownian motion The dynamics of the tagged particle is coupled to the
and the static structure factoB,=(|pg/?). The mode- coherent density correlataby(t) and for that reasom(t)
COUP“DQ approximation results in expressing the kernelgso displays the bifurcation dynamics that is driven by
my(t) in terms of the correlatorg(t) [2], $4(1). The equation for the long-time limits of the tagged

article correlations functionpy(t—o)=f:, reads
My(t) = Fl V. (D] a P a(t=)

q L
As a consequence of the factorization into pair modes for the
structural relaxation in simple liquidss, is a bilinear func-
tional of the density correlatofs],

f5/(1—15)=FoLf.f°]. (4)

In the following, the tagged particle will be assumed as of
the same sort as the host fluid. If the host particles are in the
o N o !iquid state,f;=0, gtaggeds particle cannot be arrested, and
fq[f]:_f ———Vaififig-i (1o  inthat case Eq(4) implies f;=0. . i
(2m) The MSD is defined by 2(t) =(|r4(t) — r(0)|2) and de-
and the vertex is determined completely by the static struc§cribes. the average dista_mce a particle has traveled within
ture of the liquid systeri27,28), some timet [29]. It is obtained, e.g., as small wave-number

limit of the tagged-particle correlator in E¢3), ¢§(t):1
s o > s s 252 4
Vii=SiSSs-wpld-Kect G- (G-Kiog gla®. (1@ a4 or(D/6+0(a) [2.6]

The number density is given y=N/V andc, denotes the 6r2(t)+Dsftm(o’(t—t’)ﬁrz(t’)dt’ —6DSt (58
direct correlation function which is related to the static struc- °Jo o
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m(t) =lim__ ;m§(t) = Fusol ¢(1),¢*(1)].  The mode- ba(t)=(f+Fq)+hg[(—B+By)In(t/7)
coupling functional for the MSD reads +(B,+ K B2)In%(t/7)
q
+BaIn3(t/7) + B,In*(t/7)], (8)
Fuself.151= [ G U SNCE

what includes the terms of order and neglects terms of

- o _ _ ordere®?. It involves corrections to the plateau values,
A characteristic localization length, is defined by the sec- P

ond moment for the relaxation of the distribution ¢§(t)
[2], which can be identified with the functional in Epb)
ré=1/Fuspl f,f%]. It is the long-time limit of the MSD. lIts
value at the critical pointrS, characterizes the arrested
structure. The value r@z represents the plateau for the dy-
namics of r2(t).

Equations (1)—(5) are solved numerically using algo-
rithms introduced in Refd30,31). Details of the implemen- and the prefactors,
tation are found in Refd5,11]. We used as unit of length,
d=1, and choose the unit of time so thatD}~ 1/Dj B1=(0.44425—0.06538}3)e,(V) —0.22213,(V),
=160. The structure factors for the SWS and the HCY are (11a
calculated in mean-spherical approximatiphl,32. The
wave numbers shall be discretized to a gridvbpoints with B,=(0.91183+0.068 713:3)£1(V) —0.151 9&,(V),
a spacingAg=0.4Md. The cutoff in the calculations is rang- (11b
ing from M =300 for 6>0.04 up toM =750 for §=0.02.

fo= (1= FORWAL (V) —exr(V)a(], ©)
correction amplitudes,

Kq=Rad AR, 2,2, atl/ag, (10)

B3: —0.135 04L381(V), B4: —0.046 1971,38 1(V)

B. Logarithmic decay laws (119
The asymptotic solution at higher-order singularities shallThe numbers characterizing the higher-order singularities are

be quoted from Ref[24] where also further details can be

found. The asymptotic expansion is performed in small de- R 3

viations of the correlation function from the critical long- 52% ag[agkqtay/2] (12)

time limit fg involving the coefficients

PFLV, ] and
AR k(W)= (1— >ﬁ
ofg - ofy
" M3=2{— E ag [Aqklk2|<3*'71k1<'31|<261k37L 2Aqk1k2ak1ak2Kk2]-
X(L=F ) (1=1}), (6) (13)
which can be split into values at the singularity, For the leading correction also an additional separation pa-
A(n)c, ko and remainders, Agpl ..... « (V) rameter is introduced,
=AW« TAG. .k (V). The Jacobian matrix of Eq.
2) is smgular at the critical points and assumes the forme,(V)= 2 at Ald(V)ay+264( V)E al
[ Sqx—A l)C] The non-negative left and right eigenvectors of
matrix AqmC shall be denoted baq anda, and can be fixed cra(e o 3 . . .
umquely by requiringS jaf aq=1 andS a}aj=1. The re- +2% ag[Agigi,ak, fi, /(1= fi) —agfe /(1= fg) |-
duced resolvenRy of A(ﬂ maps vectors orthogonal Hg
to vectors orthogonal taq The leading-order result for Eq. (14)

(1) is then given by ) _ _ ) )
The time scaler is determined by matching asymptotic ap-

¢q(t)=fg+hq[—Bln(t/r)], B=\[—6e,(V)/72] (7) ]E)Croximation and numerical soAIution @, (1) at the plateau
g or the rescaled plateat&l—fq for Eq. (7) and Eq.(8),

with the critical amplitude$1q=(1—fg)aq and the separa- respectively.

tion parametere;(V)=a}A(V), which is restricted to

negative valuesg,<0. If ¢ indicates the distance of the C. Coupled variables

control parameter¥ from the critical point, the leading re- Inserting the asymptotic expansion of E®) into the
sult is of orderye and correct up t@O(e). The next-to- long-time limit of Eq.(3a), the approximation for the tagged
leading-order approximation is particle dynamics up to order is obtained 33],
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B3(t)=(f5°+15) +h3[ (= B+By)In(t/7) ?§=r§4{}‘§,,SD[hkfk,fs‘j+}"§,,SD[f°,h§f;]
+(Ba+KgB?)In(t/7) Fusol i Tp1(V) = Frusol fie. F 1V Hhusp
+BsIn®(t/7) + ByIn*(t/7)], (15) —&1(V)hgp/r &2, (190

with the critical amplitude$13=(1— ffﬁaa, the correction For the generic liquid-glass transition, the asymptotic expan-

amplitudesk$, and the plateau correctiorﬁ%. The latter are  SION was carried out with a different convention as in €,
; AU however, the quantities,, K4, hS, KS, h K and
derived from functional3b) and the related coherent quan- ' q qr ™ar tlgr Ng» 1IMSDs NMSD»
tities by { are the same in both descriptidits6]. The plateau correc-
tions, T4, 5, andr? are different for liquid-glass transitions
_ ASC\aS_ sc and higher-order singularities. The expansions in E8s.
; (Sqk=Aq) Ak 2 Aqk (163 (15), and(18) share the coefficient8, B, B,, B3, andB,.
They differ in the plateau and its correction, the critical am-
plitude, and the correction amplitude.
2 (5= AGI)aKR
D. Subdiffusive power law in the MSD

_ —a§2+2 As akKk+2 [ASC akaf) ' Thg Iogarit_hmic decay laws s'haII be phras_eq for the .MSD
K in a slightly different form than in Eq.18). This is done in

order to account for the fact that the MSD is conveniently

shown in a double-logarithmic representation which is more

sensitive to the detection of power laws. The asymptotic ap-

sc . s3s proximation (18) for the MSD can be written ag=a,

Zk (Sqk—Agidakfic=—e1(V)ag +2 Agatict A(V). +a,y+a,y?+agy3+a,yt. Here, z=6r4(t)/6 and y

(160 =In(t/7) The constant term represents the square of the cor-

rected localization lengtha,=rS®—r2, the coefficientsa,

The derivatives with respect to the coherent and tagged pak hy,sn(B—B;), a,=—hysp(B,+KuspB?) as well asas

ticle glass-form factors are denoted before and after the- —h,,o;B; anda,—hyspB, are the separation dependent

comma, respectively. The coefficients are prefactors for the leading and next-to-leading-order terms.
This yields the expansion

a.kp

+ Agkpk@pt Agk p@k@p] » (16b)

INz=Inr2—r2/r&2+x'y+b,oy?+as/ry3+a,/ry*

Mo FolV, T, f3¢
ii 1_fSC) qu[ q ] +O(83/2) (206)
ni m! oy - ofy IfS - ofS
1 n P1 Pn .
with
X(l—fﬁl)- . ~(1—f§n)(1—ff;1c)- . ~(1—f,§n°) S ,
- As X —ay 12, pyo s (20b)
“AGKy, by o T Ak kg (V) e 2rgt
1
17 In leading order, one gets a power law for the MSD,
Similar arguments as above vyield the asymptotic expan- 2 e X
sion for the MSD up to ordes, or(/6=rg(t/7) (219

L with an exponent
02 2

- —r2- +

5 o2 =r&=r¢—hyspl (—B+By)In(t/7) x= hyspB/r 2. (21b)

2 2
+ (Ba+ KyspB?)In“(t/7) Exponentx varies with the square root in the separation pa-

+BaIn®(t/7) + ByIn*(t/ 1) ] (18) rametere,, cf. Eq. (7). Including the corrections of order
rescales the exponent to

with parameters X' =hysp(B—B1)/rS (229

hMSD:r?{fﬁ"SD[hk'frsﬂJr}—K/'SD[fﬁ’h;]}' (199 and the next-to-leading-order result reads
Kmso=T{Fhsol N, hp]+ Fiusol hiKic, 5] Sr2(t)/6=(t/7)* {r — 2+ b, rIn(t/7)2+ agln(t/ 7)3
+ Fusol ff . hK3 1 husp—hwso /1, (19b) +ayln(t/7)*. (22b)
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lll. CORRELATION FUNCTIONS NEARAN A, e P B B R B B e S

SINGULARITY 08
Before we can apply the asymptotic expansion of @Bg.
we need to specify the values far and { appearing in the 0.6
prefactors of Eqs(11). The A, singularity is characterized ¢4
by u3=0. This condition has been used to locate the
singularity atV=V* for the SWS by 0.2

©*=0.52768, I'*=4.4759, §*=0.04381. (23 0.3
The vanishing parameter; implies a considerable simplifi- 0.6
cation in the preceding formulas sinBg=B,=0 [24]. The
deviations of the control parameter values specifyingAhe
singularity from the ones reported in Rgf1] originate from g2
refined numerical procedures used here and they do not ex
ceed 6%. The characteristic parameter \ag <5x 104 0
at the control-parameter values specified above. The paran
eter{ varies regularly and ig=0.122 at theA, singularity.
This is smaller than the value in the HSG5s=0.269]5].

The second prerequisite for the asymptotic description ac- 0
cording to Eq.(8) are the wave-vector dependent amplitudes
fy, hg , andKg . These are shown for th&, singularity in -1
Fig. 1 together with the related values for the tagged-particle
correlator, Eq.(15). The quantities for the tagged particle .pL 1

0.4

motion are close to the ones for the coherent correlaggt) 0 5 10 15 20 2qS 30 35 40 45 50
except for values off smaller than, sayg=10. This differ-
ence was observed already for the H8$ Since we will not FIG. 1. Wave-vector dependent amplitudes characterizing the

be concerned with smadj in the following, we restrict the A, singularity, Eq.(23), for coherent and tagged particle correlators
discussion to the coherent dynamics and imply that the samgf the square-well systef8WS. In the upper and middle panels
is applicable also to the incoherent part with only minorthe critical glass-form factoré; , Eq. (2), and the amplitudeby
changes. In comparison to the HSS tlfle h¥ | f;* , and  are shown as full lines, respectively. The dashed lines represent the
hy* are extended over a broadgrange. The maximum in values forfg™ Ea. (4), :;md h3* . Eq.(169. For the hard-sphere
h; is shifted fromq~13 to q~25 reflecting the smaller lo- SYSeM(HSS, fq" andhy are shown as dotted lines. The lower
calization length in the SWS as noticed before, cf. Reg]. ~ Panel shows the correction amplitud€, Eq.(10), andKg* , Eq.
We see in the lower panel of Fig. 1 that the distributions oft16: as full and dashed lines, respectively. A squareai24.2
the correction amplitudek, andK® share that trend of be- indicates the corref:tlops for the path ca.\IcuIated.for Fig. 2 and the
. a a . . correlators shown in Fig. 3. The correction amplitudgs(— - —)
coming broader.from the HSS to tik, Slngulgrlty of the and Kg (---) for the HSS are shown for comparison. The unit of
SWS. The zero ifKq moves from around~14 in the HSS |0 gih'here and in the following figures is the hard-core dianter
to g~32 in the SWS. In addition, the amplitudes are shiftedot the particles.
to lower values for smald.

Having specified the characteristic parameters forAhe curve whereB,(q)=0, can be understood by inspecting the
singularity, the solution at any point in the control-parameterparameter® andB,. The squareB? is always positive and
space can be compared to the asymptotic approximation ggoportional toe(V), cf. Eq.(7), thereforeK ;B is propor-
the control parameters are translated into separation parartienal to K|e;(V)| and shares the sign df,. Inserting
eterse; ande,. As done for the schematic models in Ref. u3=0 and (=0.1216 into Eq. (11b yields B,(V)
[24], we start by determining the surfaces where the qua=0.11%k(V)—0.152,(V), which has to be positive to
dratic corrections in Eq(8) are zero,B,(q)=B,+ Kq82 comply with B,(q)=0. The second separation parameter is
=0. On these surfaces in the control-parameter space theegative,e,(V)<0, below the dotted curve fog,=0 in
logarithmic decay is expected to show up as straight lingFig. 2. In addition, the valuge,(V)| on the lineB,(7.0)
around the plateatfqc , as the cubic and quartic terms in Eq. =0 is larger tharje(V)| which we can also infer from the
(8) vanish because d@;=B,=u;=0 at theA, singularity,  fact that the lines;=0 is closer than the line,=0. We now
cf. Eq.(110. We get a different surface for each wave vectorchose a point on the linB,(7.0)=0, keep the first separa-
q and show typical examples in Fig. 2 for a cut through thetion parameter fixed, sag; =, and move to higher values
glass-transition diagram fa¥=6*. Forq=7.0 one getK, for K, e.g., forq=20.2 whereK,= —0.966. B2 stays the
=—1.81. The solution ofB,(V)=1.81B(V)? vyields the same and the terqu2 increases. To ensure thRa}(20.2)
chain line labeled,(7.0)=0 in Fig. 2 and is lying in the =0, the valueB,(V) has to decrease. We can achieve that
arrested region close to the line of liquid-glass transitionsby moving closer to the line,=0. For fixede; this implies
Since theK, depend smoothly om, the evolution of the a shift to lowere and highed™. Consequently the entire line,
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q=24.2

0.8

0.6
o,®
0.4

0.2

|
0.49 0.5 0.51

1 1 !
0.52 0.53 0.54

log, .t

FIG. 2. Curves of vanishing quadratic correction in &8). at FIG. 3. Logarithmic decay at th&, singularity in the SWS for
the A, singularity of the SWSB,(q)=0 (dash-dottef] for @ =24.2 on the path indicated in Fig. 2. The correlation functions
=70, 20.2, 24.2, 27.0, and fdt,=0 as labeled. The full line are shown as full lines for the states=1, 2, 3 (see text and at
shows a part of the glass-transition diagram for cons&ni™.  v=v* |apeled¢ . The horizontal line indicates the critical pla-
The lines of vanishing separation parametefeV) ande,(V) are  teau valuef? for g=24.2, short lines the renormalized plateaus
shown by a broken and a dotted line, respectl_vely. For the waveF*Jrfq. Broken lines show the approximation of EG), — (B
vectorq=24.2, a path on the cun®,(24.2)=0 is marked ) —B,)In(t/7), dotted lines the approximation by E¢). Filled and
and Iabeleq byn, for which .the.correlators are.shown in Fig. 3. open symbols, respectively, mark the points where the approxima-
Staten=2 is analyzgd also |n_F|g._ 4. For the poinik ) labeled a, tions deviate by 5% from the solution. The cross indicates the time
b, and c the decay is shown in Figs. 5 and 12. when the solution fon=3 and the critical correlatop differ by

5%. The unit of time here and in the following figures is given by

whereB,(q) =0, is rotating clockwise around th&, singu-  a short-time diffusion coefficient dd,= 1/160.
larity as K, increases. This is seen for the chain line )
B,(20.2)=0 in Fig. 2. SinceK$ is monotonic increasing 0N, (daihea:l Eq. (8). The time scales are matched at the
with g andK, has the same trend when neglecting the smalPlateaufy for the leading approximation and at the renor-
oscillations, Fig. 1, the lineB3(q)=B,(V)+B(V)?K;=0  malized plateausy +f for the first correction. We recog-
also rotates clockwise with increasing wave veaor nize that forn=3, Eq. (8) accounts for more than ten de-

The variation of the line8,(q) =0 described above de- cades in time with a relative accuracy better than 5%. The
pends only on the angle at which the lineg=0 ande, leading approximation is acceptable on that level for nine
=0 intersect at the\, singularity. This intersection is in a decades. Fon=1 two and more than one decade are cov-
sense generic that it is shared by the closé\pgingularities ~ ered, respectively. Five and three orders of magnitude in time
of the SWS. It applies also to th, singularities of the other are achieved fon=2. Forn=1,2,3, the leading approxima-
potentials which are similar to the square well. This is sotion describes at least 30% of the complete decay and when
because the functionals determining the separation paranmcluding the correction, 65% are covered on the chosen ac-
eters depend on quantities like the structure factors and theuracy level. The distance in the control paramétefrom
glass-form factors which are similar for different potentialsthe value at theé\, singularity is 25% fom=1 and 4% for
[13]. For a given wave vectay, the lineB,(q)=0 may or n=2, so no finetuning was necessary to obtain such large
may not lie in the liquid regime depending &&,. For the ~ windows for the logarithmic decay. The curae=1 requires
SWS até=6* we get a range of- 1=K =0.4 correspond- about five decades for the complete decay which is well in
ing to 20sq=35, where a lineB,(q)=0 is found in the the reach of today’s computer simulation technigigs4.
liquid regime. We illustrate this by adding lines fay It was possible to describe part of the critical decay at an
=24.2,q=27.0 and folK ;= 0 to Fig. 2. The vanishin¥ is Az singularity in a one-component model by the expansion
corresponding tag~32.3 yielding a lineB,(q)=0 still in  in polynomials in It at a point away from the singularity
the liquid. Forq=35, the latter line rotates further around [24]. We therefore compare the critical deaa;f((t) with the
the A, singularity and into the arrested regime beyond thedecay forn=3 and indicate the point at=5000 where both
almost horizontal line of liquid-glass transitions. differ by 5% in Fig. 3. With only the leading correction at

We select a wave vectay=24.2 with K;=—0.596 as our disposal, a 2% criterion was not fulfilled as for the one-
indicated in Fig. 1 by a square and choose a path on the lineomponent model, where also the next-to-leading correction
B,(24.2)=0 marked by the plus symbols in Fig. 2. Fer could be usedl24]. The dashed line fon=3 does not come
=1,2,3, the control parameters arg, ) =(3.312,0.5125), closer to the critical decay than 4%. Allowing for 5%, the
(4.271,0.5250), and (4.453,0.5274), respectively. The solunterval fromt~20 tot~4000 could be described. However,
tions are shown in Fig. 3 together with the leading approxi-at the A, singularity the approximation in Eq8) always
mation (dotted, Eq. (7), and the next-to-leading approxima- yields a straight In decay as approximation on the chosen
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FIG. 4. Logarithmic decay at thé, singularity for varying
wave vectorg. The inset shows the correlation functiosg(t) at
staten= 2 from Fig. 2 for wave vectorg=4.2, 24.2, and 32.2 from
top to bottom and the short horizontal lines show the correspondin
critical plateau valuesbg . The full panel shows the same correla-

FIG. 5. Logarithmic decay at th8, singularity for the three
states marked by triangles in Fig. 2. The inset shows the correlation
functions ¢¢(t) for q=24.2. The plateau valug; is indicated by
%ne short horizontal line. The full panel sho@g(t):[q’)q(t)— f;
—fq]/hq divided by the respective values foB{ B;) at the three
ineStates specified. The dashed curves show the result froni8Eq.

Filled squares and circles mark the points where curve a and ¢

show the asymptotic laws, E¢B). The deviations of the approxi- i 9% f . S
mations from the solutions of 5% are marked by the open symbolsqev'ate by 5% from-In(t/), respectively. The deviation for curve

Filled symbols forq=4.2 (¥) and q=32.2 @) show the 5% b (A) for short times is at/ 7~10"* and not included in the figure.
deviation from the additional approximation of neglecting quadratic
terms in Eq.(8) (see text by one and two orders of magnitude fg=24.2 than forq

i o o i =32.2 and q=4.2, respectively, what indicates that
path with Bo(q)=0. This disagrees qualitatively with the ¢ gependent higher-order corrections significantly influence
observed critical decay. o _ the range of applicability for the leading correcti(8).

To identify correctly some decay that is linear in the  The time scaler in Fig. 4 was matched fog=24.2, so
bq(t) versus log diagram with the logarithmic decay pre- {he viglation of scale universality inherent to an approxima-
dicted by the asymptotic laws, E), we chec_k if a.dlffer' tion like in Eq. (8) leads to different times(q), where the
ent correlator with a different correction amplitublg is not  correlators for differeng cross their respective renormalized

linear in Int at the same point in the control_—pgrameter SfpaceEIateauf*Jrf [24]. The representation with the rescaled
For a two-component model a characteristic alternation o a '«

concave, linear and convex decay irt lwas found[24,33. qﬁq_(t) is particularly sensi.tive to thesg devigtions since the
Not both correlators could be linear, intlat the same time. POt where the plateau is crossed is required to be zero,
For the SWS this check is performed at the paint2 from  ¢4(t/7)=0. In Fig. 4 we see that the line crossing the zero is
Fig. 2 by variation of the wave vectay. For the wave vec- slightly broader than a single curve. The deviations(q)

tors q=4.2 and 32.2 the correction amplitudes efeg are small enough to not exceed the numerical grid for the
=—1.400 and —0.0413, respectively. ThereforB,(4.2) time axis which around=2988 is given byAt=172. So we

<0 andB,(32.2)>0. We expectg,(t) to be concave or interpolate to get forj=4.2,24.2, and 32.27(q) = 2899,
convex, accordingly, as is demonstrated by the inset of Fig2988, and 3017, respectively. These differences do not intro-

4. The rescaled correlatorfﬁq(t) displayed in the full panel duce larger errors in the analysis carried out above.

allow for a more detailed analysis. We see that the solutions N order to change from convex to concave behavior we
as well as the approximations clearly exhibit increased curé@n also change the control parameters. For states above the

vature for largem. Since the coefficient linear in Inis not  ine B2(24.2)=0, we expect concave behavid@y(q)<0,
depending om, cf. Eq.(8), the middle dashed line represents for states below, convex deca§;(24.2)>0. For a demon-
the leading correction to all three correlators when the quastration of this result, the rescaled correlatgigt/ ) at the
dratic terms are neglected. For=24.2 we observe good states labeled a, b, ¢ in Fig. 2 are divided by the prefactor
agreement over almost five decades as before, cf. Fig. 3. F6B—B;) of Eq. (8). This way the part of the decay that is
g=4.2 and 32.2, however, the additional approximation redinear in Int shows up as straight line with slopein 10
duces the range of applicability to less than one decade d8 Fig. 5. Approximations(8) are shown as dashed lines
marked by the filled symbols. Including the quadratic termsfor each state representing—In(t/7)+[B,(24.2)/B
from approximation(8) extends this range by half a decade —B;)]In?(t/7). For state b the approximation is identical to
to later times and to earlier times by one and almost two—In(t/7) and the solution follows that line over five decades
decades fog=4.2 and 32.2, respectively. The time window before 5% deviation is reached. The states a and c are cho-
defined by a 5% deviation from approximatié®) is larger  sen to have the same value BrB;~0.015 andB,(24.2)
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=30.0020, respectively. The solutions at state a and c fol- '
low the —Int law closely within a 5% margin for two de- -1
cades or one decade, respectively, which is significantly les:
than found for state b. We can infer from Fig. 2 that at state

a the quadratic corrections would vanish again if we went
from q=24.2 to the higher wave vector=27.0. A scenario &

S

similar to the one shown in Fig. 3 can be found. & 9

The procedure outlined in Figs. 2— 5 can be summarized &

as follows. From the higher-order singularities there emanate
surfaces in the control-parameter space for a specific wavt

vectorq where the quadratic term in E) is zero, cf. Fig.

2, and the decay is linear in tnMoving closer to the singu- 3
larity on that surface, the window in time where the logarith-

mic decay is a valid approximation increases, cf. Fig. 3. On 2

a fixed point on that surface the decay is concaveqfﬂla

and convex fog>q, cf. Fig. 4. For fixed, the change from FIG. 6. Subdiffusive power law in the mean-squared displace-
concave to convex is achieved by crossing the mentionetent(MSD). The solutions for states 1, 2, and 3 in the inset are
surface from above in the sense exemplified in Fig. 5. shown as full lines in the full panel together with the leadidgt-

The coupled quantities share the leading asymptotic bel€d and next-to-leadingdashed! approximations by Eq(18). The
havior of the density correlators. As a consequence of théong horizontal line represents§2:0.010§6, the short horizontal
factorization theorem of MCT, only the glass-form factorslines the corrections to the plateaur§¢—r3), cf. Eq.(199. The
and the critical amplitudel, are different for the coupled straight full lines show the power law/q)*, Eq.(21a, with expo-
quantitie35]. The leading corrections imply a violation of a Nentsx=0.365, 0.173, and 0.0878 for states 1, 2, 3. The filled
generalized factorization theorem. These are proportional t8YMPols show the points where the solutions deviate by 5% from
the correction amplitudé,. Since for large wave vectors, the leading-order power laws. The inset shows part of the glass-
say q>10, the quantitiea‘é, ha’ and K3 are close to the transition diagram fos= 6* and a chain line wherb,=0, cf. Eq.

log .t

ones for the coherent correlator, the approximation for th

tagged particle correlation function@(t) for these largey
is the same as forpy(t). So the discussion forﬁa(t) is

e(20b) (see text

KuspB2+ B, is never close to zero in the liquid regime ex-
cept very close to th8, singularity. This is seen far=3 in

already exhausted by Fig. 1. Not much could be gained frongig. 6 where Irt develops a straightened decay around the

repeating the discussion of the preceding sectiortﬁfgm).

IV. MEAN-SQUARED DISPLACEMENT NEAR AN A,
SINGULARITY

According to Eq.(20a, &r2(t) is expected to exhibit
power-law behavior around the plateaug% provided the
term b, vanishes. The power-law exponents determined
explicitly in Eq. (21b) by the localization length and the
critical amplitude, which are

r*=0.04255, h¥gp=0.004051. (24)

The inset of Fig. 6 shows the line whelg from Eq.

plateau.

The power lam21) provides a different formulation of a
leading-order approximation and is shown in Fig. 6 as
straight line forn=1,2,3. Forn=1 this describes the MSD
for more than a decade as indicated by the squaresnFor
=2 three decades are covered and six decades of power-law
behavior are identified for curve=3. So the accuracy is
similar to the one provided by the approximation in next-to-
leading-order by Eq(18). Both asymptotic descriptions fall
on top of each other around the plateau and therefore cor-
roborate that the reformulatiof209 is justified. The inter-
pretation of the behavior of the MSD is then much simpler
when considering the power laws instead of the logarithms
of time. The decreasing slope of the relaxation when ap-

(203 vanishes. This line is almost identical to the one forproaching thed, singularity as in Fig. 6 is just the exponent

B,(24.2)=0 shown in Fig. 2 for the correlatows,(t). The

x from Eq. (21b) which decreases & with the square root

MSD for three states on that line is shown in the full panel.of the separation parametey, cf. Eq.(7). The same param-

It is described well by the approximation in E@L8). For

eterB is the prefactor of the leading-order logarithmic decay

staten=1,2,3, one, three, and six decades are covered witin Eq. (7). In that sense Fig. 6 is the analog of Fig. 3.
deviations less than 5%, so the approximation yields a de- The termb, in Eq. (203 varies regularly in the separation
scription of similar accuracy as for the correlation functionsparameters,; ande,, andb, is positive above the lind,

in Fig. 3. The leading result from Ed7) describes the re-

=0 and negative below. Therefore, similar to the case for the

laxation proportional to I (dotted which always has nega- correlators in the linear-log representation, in the double-
tive curvature in the double-logarithmic representation andogarithmic representation, the behavior of the MSD can be
does not provide a valid description for=1 and 2. The changed from convex to concave when crossing the line of
reason for the qualitative difference between the solution fowanishingb,. This is demonstrated for three states in Fig. 7.
the MSD and the leading logarithmic law is that the correc-State b is identical to the stare=2 in Fig. 6 and obey$,
tions proportional toKysp=—1.708 are large, Therefore, =0. The power law{/7)* is shown as straight full line. The
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FIG. 7. Concave and convex deviations from the power law, Eq.
(21) in the MSD. Solutions for the states a, b, and ¢ are shown as
full lines, approximation(21) as straight full lines for exponenis
=0.147, 0.173, and 0.285, respectively. Filled symbols denote the -1
5% deviation of the solutions from the leading-order power law.
For state b, the dashed line exhibits the corrected power law with -2
x"=0.155, Eq.(223, and the open triangle the 5% deviations of
the solution from it. Dashed lines show the approximation by Eq.
(22D for a and ¢ withb,=0.003 63 and—0.007 35, respectively, FIG. 8. Glass-form factorsg andf3°, amplitudesh} andhs®,
andx’=0.143 and 0.214. The open symbols mark the 5% deviayng correction amplitudel® and KS° at the A, singularity for 8
tions. The in.set replots the one from Fig. 6 and shows by the crossesg g3 Line styles are theqsame r:s in Fig. 1. The values aAthe
the state points a, b, and c. singularity,f¥ (dotted, h} (dash-dottey] andK? (dash-dottey] are

. . 2 . shown for comparison. The values fp+24.2 and 45.0 are marked
time scaler is matched at the plateau$~. Moving to state by diamonds. The inset show§, for 4<q<11 for 5= 5* (chain

¢ below the chain line,I(, ¢) =(3.42,0.525), a relaxation is line), 0.03 (full line), and 0.02(dotted ling.
obtained which clearly exhibits negative curvature and is

consistent with the calculated valug,=—0.00735. The he range of applicability is shifted to later times by one
leading-order power law with exponert=0.285 fulfills @ gecade and extended by two decades. The corrected power
5%-deviation criterion for two decades which accidentally|g, is valid fromt=10 to t=5x10° and comparison to

extends to short times as the approximation crosses the Spiq g shows that approximatiof®) covers a similar range.
lution twice. Reducing the allowed deviation to 4% would The accidental extension to shorter times is removed. The

reduce that interval to less than a decade. If we include thﬁpproximation now covers the range also a naive power-law
term proportional td, from Eq. (22b) and renormalize the it would yield.

exponent tox’, Eq. (223, the approximation agrees with the |, summary, the correction amplitud@,sp for the MSD
solution for three decades. It is obvious from a comparisonypes not vanish within the liquid regime. Therefore a loga-
with curve 1 in Fig. 6 that the leading-order power law de-yithmic relaxation law can be detected only for states very
scribes that solution better than it describes the solution &{jgse to the singularity. However, there is a line of vanishing
state ¢ in Fig. 7 for comparable values foand the plateau  corrections for the logarithm of the MSD. Here a logarithmic
correctionr2. The deviation to convex behavior is demon- relaxation can be observed and this describes a subdiffusive
strated by the dashed line at curve B, ¢)=(4.57,0.523). power law of the MSD. We can interpret Fig. 7 as the analog
Again the range of validity is extended to earlier times butof Fig. 5. Some quadratic correction to a leading-order linear
for later times no improvement can be found. behavior can be set to zero on a surface in control-parameter
In Fig. 6 the dashed line, which describes the next-tospace. Departing from that surface in opposite directions in-
leading-order approximation of Eq8), deviates from the troduces either positive or negative corrections and the linear
leading-order power lavi218 below the plateau where the behavior is changed to convex or concave.
range of validity for the power law extends to much smaller
times than justified by its derivation. We also recognize that
the exponenk overestimates the slope of the relaxation in

0

0 20 40 60 80 100

V. A3 SINGULARITIES

Figs. 6 and 7. In Eq(21b) only the termB from the leading- An Aj singularity is not located on a liquid-glass-
order approximation is present. Taking into account thdransition line but is the endpoint of a glass-glass-transition
renormalization of this prefactor t8—B; in Eq. (2289  line [2]. The parametep is no longer vanishing and fof
changes the exponent for state b fraxe=0.173 to x’ =0.03 we getu3z=0.109 and{=0.157. For thisAz singu-

=0.155. By comparing the full line for the leading result andlarity the g-dependent amplitudes are shown in Fig. 8. No
the dashed line for the corrected one in Fig. 7, we find thagualitative changes are obvious compared to the results
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FIG. 9. Curves of vanishing quadratic correction in E). for -1.65

the A5 singularity (O) at §=0.03. The$§=0.03 cut through the

glass-transition diagram is displayed by full lines. The various lines
are shown in the same style as in Fig. 2 and labeled accordingly
The lineb,=0, cf. Eq.(20b), indicates the analogous line for the 2.3
MSD, cf. inset of Fig. 6.

22 hK’ISD
L
shown in Fig. 1 for theA,. The smaller length scalé 0 0.005 0.01 0.015 0.02

*
=0.03 for the attractive well introduces a smaller localiza- 3-8

tion length, and this implies the broader diStribUti.onS in FIG. 10. Parameters for the asymptotic description atAge
wave-vector spacg. So the trend seen When phanglng frog?ngularities of the SWS for varying. Panel A displaygu; (A),
the HSS t-o tha‘\{1 smgu!a}rlty of the SWS is continued when Eq. (13, and ¢ (¢), Eq. (12. The dashed curve shows the
approachingd; singularities at smalle$. There are only two asymptotic&* — & law for the u5. The localization length? is

notable exceptions at smallgr First, the value fok, at the  shown in panel B. The correction amplitudéss and the ratios
position of the structure factor peak is minimal for thAg, hOp/r %, are shown in panels C and D.

—-1.81= K§<Kg=—1.72. The inset shows this region

enlarged fors= 6%, 0.03, and 0.02, demonstrating thafat  curve B,(46.2)=0. Although the change in the wave vector
the peak is again larger for th&; singularity with smaller s relatively small in comparison tq=45.0, the values for
well width 0.02, where&k ;= —1.69. Second, the zero-wave- K, differ by more than 20% for fixed and induce a rotation
vector limit of K§ is also smallest at tha, singularity. The  of the line B,(q)=0 by quite a significant angle.

/r

MSD

respective values fov=6*, 0.03, and 0.02 are-1.71, Having in mind the drastic changes in the lines where
—1.64, and—1.62. Therefore, one experiences the strongesB,(q) =0, it may come with some surprise that the line for
g-dependent corrections at tidg singularity. the MSD, whereb,= 0, stays rather robust and accessible in

Figure 9 shows the analog of Fig. 2 for a cut through thethe liquid regime as seen in Fig. 9. The variatiorgifor the
glass-transition diagram at=0.03. The linese;=0 and amplitudes is reflected in changes of the localization lengths.
e,=0 for the Az singularity are obtained from a smooth For theA; singularity at6=0.03 we get
transformation of the corresponding lines at fhesingular-
ity, and they appear in similar locations in the diagram. The ro=0.0243, hfgp=0.00136. (25
line e,=0 is again very close to the almost horizontal line of
transitions. Just below, we find again the line wheigq)  From Eq.(24) one getsr}/rd=1.75 and the square of the
=0 whenK,=0. However, this now represergs=57.5, cf.  latter ratio,ri?/rJ?~3, is the same abysp/hysp. Since
Fig. 8, which is a value almost twice as large as for theonly the fractionhMSD/r§ could introduce larger modifica-
corresponding line in Fig. 2. For the wave veater 24.2 we  tions in Eq.(20a, the changes i, cancel approximately
find the line, whereB,(24.2)=0, completely in the glass and the line specified blp,=0 experiences only minor de-
state. Taking the same value for the correction amplitude aformations whens is varied. The wave vector for which the
for q=24.2 at theA,, K§~—0.6, we obtaing=45.0, cf. lines B,(q)=0 andb,=0 are closest to each other, s
Fig. 8 and the line labeled accordingly in Fig. 9. Since the=45.8 at theA; singularity for §=0.03.
latter line comes close to the liquid-glass-transition line we To corroborate the finding for the MSD from the preced-
take that as a reference and estimate the range of wave veog paragraph, the parameters for the asymptotic description
tors where the quadratic corrections can be put to zero in thef the MSD at theA; singularities are shown in Fig. 10. The
liquid regime to 455q=<70. The lines wherd8,(q)=0 can  u3 vanish when we approach th%, singularity. The de-
be rather sensitive tq variation. This is demonstrated by the crease close té* is described asymptotically by a square-
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root variation,uz%c+/8* — 8, shown by the dashed lif&3]. 16
The smallness of.; indicates that all thé\; singularities are
already influenced by the proximity of the close-Ry sin-
gularity. One can take advantage of this finding and conclude 4}
that the terms proportional t@5 in Eq. (8) are small. More-
over, one may negle®; andB, in Eq. (110 entirely with- Frerermmmimemmeer
out introducing large additional errors. The leading correc-
tion to the logarithmic decay laws is then only quadratic also
for the A; singularities. Parametér varies regularly around L
a finite value at5* but shares the variation qf5 at 5* due
to Eq. (13). Panel B shows the decrease of the localization 10
length at theA; singularity whené is reduced. A change of
40% inr? from 6= 6* to 6=0.03, cf. Eqs(24) and(25), is
reflected in the broadening of the distributionsgrseen in 3 | . L |
Figs. 1 and 8. This broadening is responsible for the large 0.5 0.5 02 0.53 0.54
variation in g when comparing Fig. 2 with Fig. 9. It was
noted in the discussion of the inset of Fig. 8 tII’{q; intro- FIG. 11. Cut through the parameter space for the hard-core
duces the strongest corrections for the correlation function¥ukawa system fos= 6*. Line styles are the same as in Fig. 2.
at theA, singularity. This is also true for the MSD as seen in The wave vectorsj=15.0, 21.4, 27.0, and 28.2 are approximately
panel C fork ysp Which is largest in absolute value at tAg equivalent Foq:7.0, 20.2, 24.2, and 27.0 in Fig. 2, respectively,
singularity. The variation ifKysp with & is, however, small ~ &fter rescalind” by a factor of 2.98see text
and does_not mtrodyce S|gn|f|c§1r!t changea4n Eq. (ZQb). VIl. CONCLUSION
The amplitudehygp is the remaining parameter entering Eq.
(20b) that could alter the location of the line,=0 in the Logarithmic decay or, equivalently, fLhoise in the fluc-
glass-transition diagram. We noted above that only the ratituation spectra, can arise in a number of situations and is
hMSD/rg2 needs to be considered which is shown in panel Dexplained by various approachig6]. In the log-linear rep-
From there one infers that the ratio varies only by less thamesentation appropriate for the correlation functions, this de-
5%. We can conclude that the line of power-law variationcay exhibits a straight line. To discriminate the logarithmic
for the MSD stays in the liquid regime even whehis  decay laws originating from higher-order glass-transition sin-
changed significantly. gularities within MCT[ 24] from other possible scenarios one
needs criteria to distinguish one from the other. The theory
makes specific predictions where in the control-parameter
VI. HARD-CORE YUKAWA SYSTEM space the logarithmic decay is expected and how the correc-
) N o _ tions introduce deviations from that behavior. In this paper,
The A, singularities occurring in MCT are topologically the scenarios are discussed in quantitative detail for an ex-
stable, smooth changes in the control parameters do not chglmple relevant for studies of colloidal dynamics, the SWS.
|enge their existence. Therefore, the results for the SWS Ca.'rb proceed, specific cuts through the three-dimensional pa-
be applied also to other potentials with a short-ranged attraGameter space are considered. Here, lines are identified where
tion. Nevertheless, the deformation of the potential mightthe corrections quadratic in the logarithm of time vanish for
introduce changes large enough to be relevant for the deteg-chosen wave vecta, cf. Fig. 2. These lines emanate from
tion of the higher-order singularities. Among several potenthe higher-order singularity and rotate clockwise around the
tials the HCY system was found to differ by up to 20% in nhigher-order singularity with increasing The correlation
certain properties at thd, singularity from the SWS§13].  functions for states on these lines exhibit decays that are
Since other potentials differ less we use that system as ghear in the logarithm of time for several orders of magni-
second example for af, singularity. tude in time, cf. Fig. 3. In leading order, the slope of the
Figure 11 shows the analog of Fig. 2 for the HCY. For adecay is given by the square root of the distance from the
comparison, the\, singularity in the SWS was mapped on higher-order singularity, Eq7). The mean-squared displace-
top of theA, singularity in the HCY by scaling ih" with a  ment MSD displays a power law, E(21a), that is valid on a
factor of 2.98 and by a shift i of 0.0065. The same trans- similar line in the control-parameter space, cf. Fig. 6. The
formation was applied to the lines wheBy(q)=0 in the  exponentx of this subdiffusive behavior is also decreasing
SWS. Figure 11 displays thB,(q)=0 lines for the HCY  with the square root of the distance. Both the logarithmic
that come closest to the ones shown in Fig. 2 after the mapdecay and the power law are accessible in the liquid regime.
ping. The correction amplitude, for the HCY vanishes at The logarithmic decay is predicted for wave vectgrsvhich
g~ 34, and the range in wave vector for whiBl(q)=0 is are equivalent to values of about three to four times the first
lying in the liquid regime is shifted to higher wave vectors, peak of the static structure factor.
21=q=36 or —0.9=K;=0.2, in comparison to the SWS. In a semilogarithmic representation for the correlation
For q=27.0 we get the lindB,(q)=0 for the HCY that is functions and a double-logarithmic plot of the MSD, charac-
closest to the lineb,=0 for the MSD as compared to teristic convex and concave relaxation patterns are found
B,(24.2)=0 in the SWS. when states are chosen that are off the specified lines, cf.

031405-11



M. SPERL PHYSICAL REVIEW E 68, 031405 (2003

1 == 1 T I T I T I T I T I T I T
0.8 08
0.6
¢q<‘)04- ; 06
. q
r 04
0.2
I 0.2
0.8
0.6 0.1
0 |
04 0.08
02 h, 0.06
7] 0.04
108 0.02|- 28
FIG. 12. Correlators for states(panel a and b(panel b from
Fig. 2 for wave vectorg=4.2, 20.2, 24.2, 27.0, 32.2, and 36.2
from top to bottom. Full lines show the solutions of the MCT equa-
tions for the SWS, dashed lines the approximation by (B). Tri- FIG. 13. Comparison of, andh, from the fit to the simulation
angles mark the 5% deviation of the correlator from the approxi-of two different state§37] with the valuest* andh* for the SWS

; . R q q
mation forq=27.0 and 24.2, respectively. The dotted vertical linesfrom Fig. 1. For the comparison in the lower panel the theoretical

indicate the time scales, the short horizontal lines the corrected values are multiplied by 0.14.
plateau value‘qufq for g=27.0 and 24.2, respectively.
reason a larger absolute curvature is attributed to the correla-

Figs. 5 and 7. Due to the variation of the correction ampli-tors by the approximation than a fit would do. A free fit could
tudeK,, in Fig. 1, a similar variation from convex to concave identify logarithmic behavior at state b for=20.2 fromt
behavior is introduced by changes in the wave vector at &5 t0 t=5X10" with a deviation of at most 5%. In addi-
fixed point in control-parameter space, cf. Fig. 4. These detion, fitting the correlator fog=24.2 also fort=10> would
viations from logarithmic behavior provide a test for the Yield positive curvature. Therefore, a free fit in that region of
clear identification of dynamical scenarios that are consisterifie control-parameter space tends to find the logarithmic de-

with Eq. (8) and hence originate from higher-order singulari- cay at a somewhat lower wave vector than predicted by Eq.
ties. (8). However, with a choice of the time scatethat is rea-

When the localization at the higher-order singularity isSonably close to the theoretical value, the concave and con-
changed by either deforming the shape of the potential or byex decay patterns can still be identified unambiguously in
moving toA; singularities at smaller ranges of the attraction,the correlators without invoking additional assumptions.
the logarithmic decay of the correlation functions is shifted A recent molecular dynamics study of a binary mixture of
to higher wave vectors. Whereas the difference between thequare-well particles identifies a power law witkr 0.28 for
SWS and the hard-core Yukawa system atAhesingularity ~ the MSD over four decades and a related logarithmic decay
is modest, cf. Fig. 2 and Fig. 11, the lines of vanishing qua©f the correlation function at a wave vectpe16.8[37]. A
dratic correction change drastically at tAg singularity, cf. scenario similar to Fig. 12 was found for the correlation
Fig. 9. In contrast, the line where the subdiffusive power lawfunctions: Upon increasing, a change from concave to con-
for the MSD s valid, is robust against changes of the wellvex decay is observed. For a second state, faster decay with
width and the potential shape, cf. Figs. 6, 9, and 11. larger prefactors for the logarithmic decay is reported to-

For comparing the solutions of the equations of motion,gether with a larger exponent=0.44, for the power law in
Egs. (1), (3), and(5), with the asymptotic expansions, Egs. the MSD. This finding is consistent with the assumption that
(8), (15), and (18), all parameters are calculated explicitly this second state is further from the supposed higher-order
except the time scalewhich is matched at the plateau. In an singularity than the first state. Different from Fig. 12, in the
experiment or a computer simulation only the correlators aréimulations was changed to vary the distance whjl@ndl
available directly. We show these in Fig. 12 for two stateswere kept fixed. The logarithmic decay was shifted to a
specified in Fig. 2 for different wave vectors. Since state b idiigher wave vector for smalle?[37]. This is consistent with
closer to theA, singularity, the range of validity for the the expectation that can be inferred from Figs. 2 and 9 by
asymptotic approximation is larger than for state a. Espeobserving, e.g., the rotation of the lir®,(24.2)=0. The
cially the extension of the linear-log decay at some specifi@nalysis of the simulation data allowed for a fit of the values
wave vector increases when moving closer to the singularityfor f5 andhg [37]. These are shown in Fig. 13 together with
As noted in connection with Fig. 4, the range of validity for the theoretical predictions for the SWS. The fitted parameters
the approximation by Eq8) may vary withq. Partly for that  for both states almost fall on top of each other fgr. The
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amplitudehy is deduced from the simulation data only up to  In summary, scenarios for logarithmic decay near higher-
some overall factor. It can be matched reasonably by a mulerder glass-transition singularities are presented in this work.
tiplication of the theoretical prediction fdi* . The exten- Some essential predictions are supported by the results of
sions inq for the values obtained from MCT for the SWS are computer simulations. This should motivate further investi-
narrower, the width at half maximum fd, differs by 15%. gations in colloidal systems with short-ranged attraction. In
A similar difference was observed for a binary mixture of particular, the power-law behavior for the MSD including the
hard spheres and agreement between theory and simulatiggVviations might be accessible to experiments.

could be improved by using the structure factor from the
simulation as input to the MCT calculatioi88]. For the
amplitudeh;; the locations of the maxima disagree by 15%
and the width is different by 25%. The deviations fpr7 | thank W. Gdze for valuable discussion. This work was

in both f, andh, can be attributed to the effects of mixing supported by the Deutsche Forschungsgemeinschaft Grant
[38]. No. Go154/13-1.
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